数学物理学报 ›› 2018, Vol. 38 ›› Issue (4): 649-657.
曹建兵
收稿日期:
2017-02-21
修回日期:
2017-10-29
出版日期:
2018-08-26
发布日期:
2018-08-26
作者简介:
曹建兵,E-mail:caocjb@gmail.com
基金资助:
Cao Jianbing
Received:
2017-02-21
Revised:
2017-10-29
Online:
2018-08-26
Published:
2018-08-26
Supported by:
摘要: 借助于代数度量广义逆方面的扰动结论,同时利用一般的约束极值解问题和无约束极值问题的一个等价转化,该文在自反严格凸Banach空间中获得了具有等式约束的极值解问题的扰动估计.最后,作为主要结论的推论,该文分别考虑了不适定算子方程的极值解、最佳逼近解和点投影到线性流形等问题的扰动分析.
中图分类号:
曹建兵. 自反严格凸Banach空间中约束极值解问题的扰动分析[J]. 数学物理学报, 2018, 38(4): 649-657.
Cao Jianbing. Perturbation Analysis for Constrained Extremal Solution Problems in Reflexive Strictly Convex Banach Spaces[J]. Acta mathematica scientia,Series A, 2018, 38(4): 649-657.
[1] | Cao J B, Xue Y F. On the simplest expression of the perturbed Moore-Penrose metric generalized inverse. Ann Univ Buchar Math, 2013, 4:1-14 |
[2] | Cao J B, Zhang W Q. Perturbation of the Moore-Penrose metric generalized inverse in reflexive strictly convex Banach spaces. Acta Math Sin, 2016, 32:725-735 |
[3] | Cao J B, Xue Y F. Perturbation analysis of the algebraic metric generalized inverse in Lp(Ω, μ). Numer Funct Anal Optim, 2017, 38:1624-1643 |
[4] | Chen G L, Xue Y F. Perturbation analysis for the operator equation T x=b in Banach spaces. J Math Anal Appl, 1997, 212:107-125 |
[5] | Chen G L, Wei Y M, Xue Y F. Perturbation analysis of the least square solution in Hilbert spaces. Linear Algebra Appl, 1996, 244:69-80 |
[6] | Ding J. Perturbation bounds for least squares problems with equality constraints. J Math Anal Appl, 1999, 229:631-638 |
[7] | Ding J. Lower and upper bounds in the perturbation of generallinear algebraic equations. Appl Math Lett, 2001, 20:49-52 |
[8] | Ding J. On the existence of solutions to equality constrained least-squares problems in infinite dimensional Hilbert spaces. Appl Math Comput, 2002, 131:573-581 |
[9] | Ding J. Lower and upper bounds in the perturbation of general linear algebraic equations. Appl Math Lett, 2004, 17:55-58 |
[10] | Ding J, Huang W. New perturbation results for equality constrained least squares problems. Linear Algebra Appl, 1998, 272:181-192 |
[11] | Du F P. Perturbation analysis for the Moore-Penrose metric generalized inverse of bounded linear operators. Banach J Math Anal, 2015, 9:100-114 |
[12] | Hudzik H, Y Wang Y W et al. Criteria for the metric generalized inverse and its selections in Banach spaces. Set-Valued Var Anal, 2008, 16:51-65 |
[13] | Kreyszig E. Introductory Functional Analysis with Applications. New York:Wiley, 1978 |
[14] | Liu P, Wang Y W. The best generalized inverse of the linear operator in normed linear space. Linear Algebra Appl, 2007, 420:9-19 |
[15] | Ma H F, Sun Sh et al. Perturbations of Moore-Penrose metric generalized inverses of linear operators in Banach spaces. Acta Math Sin, 2014, 30:1109-1124 |
[16] | Ma H F, Hudzik H et al. Continuous homogeneous selections of set-valued metric generalized inverses of linear operators in Banach spaces. Acta Math Sin, 2012, 28:45-56 |
[17] | Nashed M Z, Votruba G F. A unified approach to generalized inverses of linear operators:Ⅱ, Extremal and proximal properties. Bull Amer Math Soc, 1974, 80:831-835 |
[18] | Ni R X. Moore-Penrose metric generalized inverses of linear operators in arbitrary Banach spaces. Acta Math Sin, 2006, 49:1247-1252 |
[19] | Shang S, Cui Y A. Approximative compactness and continuity of the set-valued metric generalized inverse in Banach space. J Math App, 2015, 422:1363-1375 |
[20] | Singer I. The Theory of Best Approximation and Functional Analysis. New York:Springer-Verlag, 1970 |
[21] | Wang Y W, Wang Z. A new perturbation theorem for Moore-Penrose metric generalized inverse of bounded linear operators in Banach spaces. Acta Math Sci, 2017, 6:1619-1631 |
[22] | Wang Y W. Generalized Inverse of Operator in Banach Spaces and Applications. Beijing:Science Press, 2005 |
[23] | Wang Y W, Yu J F. The character and representive of a class of metric projection in Banach space. Acta Math Sci, 2001, 1:29-35 |
[24] | Wang Y W, Yu J F. The minimal norm extrimal solution to the non-homogeneous ill-posed boundary value problem in Banach Space Lp(Ω). Acta Math Sci, 2001, 2:191-200 |
[25] | Wang H, Wang Y W. Metric generalized inverse of linear operator in Banach space. Chin Ann Math, 2003, 24:509-520 |
[26] | Xue Y F. Stable Perturbations of Operators and Related Topics. Singapore:World Scientific, 2012 |
[1] | 李玉丹, 吴德玉, 阿拉坦仓. 无穷维Hamilton算子的本质谱[J]. 数学物理学报, 2018, 38(3): 476-483. |
[2] | 罗李平, 罗振国, 邓义华. 脉冲扰动对非线性时滞双曲型分布参数系统振动的影响[J]. 数学物理学报, 2018, 38(2): 313-321. |
[3] | 狄艳媚, 李春霞, 沈守枫, 马文秀. 基于李代数sl(m+1,R)的多分量扰动AKNS孤子梯队[J]. 数学物理学报, 2018, 38(1): 24-33. |
[4] | 欧阳成, 莫嘉琪. 非线性Duffing扰动振子共振机制的研究[J]. 数学物理学报, 2018, 38(1): 190-196. |
[5] | 王维, 朱玉灿. Fusion框架系统的局部框架扰动的稳定性[J]. 数学物理学报, 2017, 37(2): 228-238. |
[6] | 张丽萍, 刘东毅, 张国山. 带有内部扰动的Timoshenko梁系统的指数稳定性[J]. 数学物理学报, 2017, 37(1): 185-198. |
[7] | 李择均, 孙淑芹. 一个扰动变分不等式的可解性[J]. 数学物理学报, 2016, 36(3): 473-480. |
[8] | 张靖. 带有Hardy和Sobolev-Hardy临界指标项的扰动椭圆方程的解[J]. 数学物理学报, 2016, 36(3): 500-506. |
[9] | 张树文. 具Markov转换和脉冲扰动的捕食-食饵系统的动力学[J]. 数学物理学报, 2016, 36(3): 569-583. |
[10] | 张树文. 具有时滞和扩散的随机捕食-食饵系统[J]. 数学物理学报, 2015, 35(3): 592-603. |
[11] | 田俊红, 曹小红, 戴磊. Weyl型定理的稳定性[J]. 数学物理学报, 2014, 34(6): 1500-1506. |
[12] | 徐嘉, 代国伟. 带p-Laplacian 扰动对称泛函无穷多个临界点的存在性[J]. 数学物理学报, 2014, 34(6): 1532-1541. |
[13] | 王胜华, 贾善德, 袁邓彬. 种群细胞中一类迁移算子的谱分析[J]. 数学物理学报, 2014, 34(6): 1592-1598. |
[14] | 谢冬秀, 张忠志. 具最小二乘谱约束的结构矩阵逼近问题及其扰动分析[J]. 数学物理学报, 2013, 33(1): 37-45. |
[15] | 朱红波, 王征平, 郭渊斌. 带有扰动项的Hénon方程的多解性研究[J]. 数学物理学报, 2012, 32(4): 785-796. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 125
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 133
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|