[1] 罗李平, 罗振国, 杨柳. 具脉冲扰动和时滞效应的拟线性抛 物系统的(强)振动分析. 应用数学学报, 2016, 39(1):21-30Luo Liping, Luo Zhenguo, Yang Liu. (Strong) Oscillation analysis of quasilinear parabolic systems with impulse perturbation and delay effect. Acta Mathematicae Applicatae Sinica, 2016, 39(1):21-30 [2] 马晴霞, 刘安平. 脉冲时滞中立双曲型方程组的振动性. 数学物理学报, 2016, 36A(3):462-472Ma Qingxia, Liu Anping. Oscillation of neutral impulsive hyperbolic systems with deviating arguments. Acta Mathematica Scientia, 2016, 36A(3):462-472 [3] Ning X Q, You S J. Oscillation of the systems of impulsive hyperbolic partial differential equations. Journal of Chemical and Pharmaceutical Research, 2014, 6(7):1370-1377 [4] Ma Q X, Liu A P. Oscillation criteria of neutral type impulsive hyperbolic equations. Acta Mathematica Scientia, 2014, 34B(6):1845-1853 [5] 罗李平, 曾云辉, 罗振国. 具脉冲和时滞效应的拟线性双曲系统的振动性定理. 应用数学学报, 2014, 37(5):824-834Luo Liping, Zeng Yunhui, Luo Zhenguo. Oscillation theorems of quasilinear hyperbolic systems with effect of impulse and delay. Acta Mathematicae Applicatae Sinica, 2014, 37(5):824-834 [6] 罗李平, 罗振国, 曾云辉. 基于脉冲控制的非线性时滞双曲系统的振动分析. 系统科学与数学, 2013, 33(9):1024-1032Luo Liping, Luo Zhenguo, Zeng Yunhui. Oscillation analysis of nonlinear delay hyperbolic systems based on impulsive control. Journal of Systems Science and Mathematical Sciences, 2013, 33(9):1024-1032 [7] Yang J C, Liu A P, Liu G J. Oscillation of solutions to neutral nonlinear impulsive hyperbolic equations with several delays. Electronic Journal of Differential Equations, 2013, 2013(27):1-10 [8] Luo L P, Wang Y Q. Oscillation for nonlinear hyperbolic equations with influence of impulse and delay. International Journal of Nonlinear Science, 2012, 14(1):60-64 [9] Liu A P, Liu T, Zou M. Oscillation of nonlinear impulsive parabolic differential equations of neutral type. Rocky Mountain Journal of Mathematics, 2011, 41(3):833-850 [10] 罗李平, 杨柳. 具高阶Laplace算子的非线性脉冲时滞双曲型方程的振动判据. 系统科学与数学, 2009, 29(12):1672-1678 Luo Liping, Yang Liu. Oscillation criteria for nonlinear impulsive delay hyperbolic equations with higher order Laplace operator. Journal of Systems Science and Mathematical Sciences, 2009, 29(12):1672-1678 [11] Gilbarg D, Trudinger N S. Elliptic Partial Equations of Second Order. Berlin:Springer-Verlag, 1977 [12] Philos Ch G. A new criterion for oscillatory and asymptotic behavior of delay differential equations. Bull Acad Polon Sci Ser Sci Math Astron Phys, 1981, 29(4):367-370 |