数学物理学报 ›› 1997, Vol. 17 ›› Issue (S1): 108-113.

• 论文 • 上一篇    下一篇

关于非线性微分方程的非振动解及其渐近性

冯兆生1, 费树岷2   

  1. 1. 北京交通大学应用数学系 北京 100044;
    2. 东南大学自动化所 南京 210018
  • 收稿日期:1996-04-15 修回日期:1996-10-11 出版日期:1997-12-26 发布日期:1997-12-26
  • 基金资助:

    国家自然科学基金

On Non-Oscillation and Asymptotic Behavior of the Solutions of a Class of Nonlinear Equation With Periodic Coefficients

Feng Zhaosheng1, Fei Shumin2   

  1. 1. Dept of Math. Northern Jiaotong Univ. Beijing 100044;
    2. Auto. Institute. Southeast Univ. Nanjing 210018
  • Received:1996-04-15 Revised:1996-10-11 Online:1997-12-26 Published:1997-12-26

摘要:

该文主要利用Brouwer不动点定理和解的交差比率法,研究下列非线性微分方程
y'=Σi=0mAi(t)y'(m > 2,mN)(1)
(其中,Ai(t)(i=0,1,2,…,m)均是以ω为周期的连续函数,ω>0).解的振动性及其渐近性,得到了几个关于方程(1)的非振动解与其ω周期解之间的渐近关系的定理.

关键词: 微分方程, 振动解, 周期解, 渐近性, 不动点

Abstract:

In the paper, it is investigated the following nonlinear differential equation.with periodic coefficients
y'=Σi=0mAi(t)y' (m > 2,mN) (1)
Obtained a few theorens for non-oscillation and by the method of cross-ratio of solutions and the Brouwer fined point theorem and asymptotic of the solutions of equation (1).

Key words: differential equation, oscillation periodic solution, asymptotic property, fixed Point