数学物理学报 ›› 1997, Vol. 17 ›› Issue (3): 285-293.

• 论文 • 上一篇    下一篇

C(S)空间中多元的Bernstein-Kantorovich算子的正逆定理

李松   

  1. 浙江大学数学系 杭州 310027
  • 收稿日期:1995-09-12 修回日期:1996-04-16 出版日期:1997-06-26 发布日期:1997-06-26

The Direct and Inverse Theorems for Multidimensional Bernstein-Kantorovich Operators in C(S)

Li Song   

  1. Zhejiang University
  • Received:1995-09-12 Revised:1996-04-16 Online:1997-06-26 Published:1997-06-26

摘要: C(S)空间中,对定义在单形上的Bernstein-Kantorovich算子Kn(f),给出了一个积分型估计式及一个弱型逆定理,得到了当0 < α < 1时,‖Knf-fC(S)=O(n-α)⇔ws2(f,t)C(S)=O(t2α),其中ws2(f,t)C(S)为定义在C(S)空间中的Ditzian-Totick光滑模[1].

关键词: Bernstein-Kantorovich算子, 光滑模

Abstract: In this paper, a integral estimation and inverse theorem of weak type in continuous spaces are obtained for Bernstein-Kantorovich operator Knf on a simplex. These will imply,for 0< α< 1 and fC(S),‖Knf-fC(S)=O(n-α)⇔ws2(f,t)C(S)=O(t2α),where ws2(f,t)C(S) is Ditzian-Totik modulus of smoothness.

Key words: Bernstein-Kantorovich operators, Modulus of smoothness