数学物理学报 ›› 1998, Vol. 18 ›› Issue (4): 419-428.

• 论文 • 上一篇    下一篇

双随机狄里克莱级数收敛性

田范基   

  1. 湖北大学数学系 武汉 430062
  • 收稿日期:1997-03-25 出版日期:1998-12-26 发布日期:1998-12-26

Convergence of Bi-random Dirichlet Serties

Tian Fanji   

  1. Department of Mathematics, Wuhan University, Wuhan 430072
  • Received:1997-03-25 Online:1998-12-26 Published:1998-12-26

摘要: 该文研究特点是:用强大数定律,中心极限定理研究随机系数{an}部分和及随机指数λn极限性质, 研究结果是;(i)在易满足条件下0 < limn→∞|(∑i=lnEai)/n| ≤ limn→∞|(∑i=jnEai)/n| < ∞,(ii)在an独立同分布,方差存在条件下;(iii)在{an}独立,Ean=0,及附加适当条件下,得出收敛横坐标σc简洁公式.

关键词: 弱狄里克莱级数, 双随机狄里克莱级数, 强大数定律, 方差

Abstract: Consider the convergence of bi-random Dirchlet series ∑n=lan(ω)en(ω)s, wherean an(ω) and λn(ω) are random variables, we study the limit properties of ∑i=lnan(ω) and λn(ω) by thestrong law of large numbers and the central limits theorems. Some simple and explict formulae of the absciasssa of convergence σc attained under one of following conditions:(i) 0 < limn→∞|(∑i=lnEai)/n| ≤ limn→∞|(∑i=lnEai)/n| < ∞; (ii) {an} is a sequence of real or complex independent andequally distributed random variables with finite variances D(an); (iii) {an} is a sequence of independent random with expectation Ean=0 and other suitable conditions.

Key words: Weak Dirichlet series, Bi-random Dirichlet series, The strong law of large numbers, Variance