数学物理学报 ›› 2017, Vol. 37 ›› Issue (6): 1148-1161.

• 论文 • 上一篇    下一篇

一类具有校正隔离率随机SIQS模型的绝灭性与分布

魏凤英, 林青腾   

  1. 福州大学数学与计算机科学学院 福州 350116
  • 收稿日期:2016-11-25 修回日期:2017-05-17 出版日期:2017-12-26 发布日期:2017-12-26
  • 通讯作者: 魏凤英,E-mail:weifengying@fzu.edu.cn E-mail:weifengying@fzu.edu.cn
  • 基金资助:
    国家自然科学基金(11201075)和福建省自然科学基金(2016J01015)

Extinction and Distribution for an SIQS Epidemic Model with Quarantined-Adjusted Incidence

Wei Fengying, Lin Qingteng   

  1. College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116
  • Received:2016-11-25 Revised:2017-05-17 Online:2017-12-26 Published:2017-12-26
  • Supported by:
    Supported by the NSFC (11201075) and the FPNSFC (2016J01015)

摘要: 该文探讨了一类具有校正隔离率的随机传染病模型,得到了该模型存在唯一的全局解.研究表明,当白噪声强度取较大值时,随机模型的解在无病平衡点附近是绝灭的,感染者的密度将指数衰减到零.当白噪声的强度较小时,随机模型的正解在地方病平衡点附近服从唯一的平稳分布.进而,若地方病平衡点是稳定的,在适当的条件下,该解渐近服从一个三维正态分布,且得到了均值与方差的表达式.最后,数值模拟图显示了该解的性质并对模型做出了合理的解释.

关键词: 随机SIQS传染病模型, 绝灭, 平稳分布, 正态分布, 李雅谱诺夫函数

Abstract: This paper discusses a stochastic SIQS epidemic model with the quarantined-adjusted incidence. We obtain that, the stochastic model admits a unique and global solution. Our research reveals that, when the intensities of the white noises are large enough, the solution of the stochastic model around the disease-free equilibrium will be extinct, and the density of the infective individuals will exponentially approach zero. When the intensities of the white noises are small enough, the positive solution of the stochastic model obeys a unique stationary distribution around the endemic equilibrium. Further, Under some sufficient conditions, the solution will asymptotically follow a three-dimensional normal distribution if the endemic equilibrium is stable, and the mean and the variance can be expressed by formulation. Moreover, the numerical simulations demonstrate the properties of the solution and give good explanations to our model.

Key words: Stochastic SIQS epidemic model, Extinction, Stationary distribution, Normal distribution, Lyapunov functions

中图分类号: 

  • O211.63