[1] Rahman S M A, Zou X. Modelling the impact of vaccination on infectious diseases dynamics. J Biol Dyns, 2015, 9(suppl 1):307-320 [2] Bai Z, Wu S L. Traveling waves in a delayed SIR epidemic model with nonlinear incidence. Appl Math Comput, 2015, 263:221-232 [3] Berestycki H, Hamel F, Kiselev A, Ryzhik L. Quenching and propagation in KPP reaction-diffusion equations with a heat loss. Arch Ration Mech Anal, 2005, 178:57-80 [4] Capasso V, Serio G. A generalization of the Kermack-Mckendrick deterministic epidemic model. Math Biosci, 1978, 42:43-61 [5] Carr J, Chmaj A. Uniquence of the traveling waves for nonlocal monostable equations. Proc Amer Math Soc, 2004, 132:2433-2439 [6] Ducrot A, Langlais M, Magal P. Qualitative analysis and travelling wave solutions for the SI model with vertical transmission. Commun Pure Appl Anal, 2012, 11:97-113 [7] Fang J, Zhao X Q. Monotone wavefronts for partially degenerate reaction-diffusion systems. J Dynam Differential Equations, 2009, 21:663-680 [8] Fu S C. Traveling waves for diffusive SIR model with delay. J Math Anal Appl, 2016, 435:20-37 [9] Hsu C H, Yang T S. Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models. Nonlinearity, 2013, 26:121-139 [10] Huang J, Zou X. Existence of traveling wavefronts of delayed reaction diffusion systems without monotonicity. Discrete Contin Dyn Sys, 2003, 9:925-936 [11] Li Y, Li W T, Lin G. Traveling waves of a delayed diffusive SIR epidemic model. Comm Pure Appl Anal, 2015, 14:1001-1022 [12] Liang X, Zhao X Q. Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Comm Pure Appl Math, 2007, 60:1-40; Erratum:Comm Pure Appl Math, 2008, 61:137-138 [13] Ma S. Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem. J Differential Equations, 2001, 171:294-314 [14] Martin R, Smith H. Absract functional differential equations and reaction-diffusion systems. Trans Amer Math Soc, 1990, 321:1-44 [15] Murray J D. Mathematical Biology I, Ⅱ. New York:Springer, 2002 [16] Perko L. Differential Equations and Dynamical Systems. New York:Springer, 2001 [17] Wang H. Spreading speeds and traveling waves for non-cooperative reaction-diffusion stsyems. J Nonlinear Sciences, 21:747-783 [18] Wang H, Wang X S. Travelling waves phenomena in a Kermack-McKendrick SIR model. J Dynam Differential Equations, 2016, 28:143-166 [19] Wang X S, Wang H, Wu J. Travelling waves of diffusive predator-prey systems:disease outbreak propagation. Discrete Contin Dyn Sys, 2012, 32:3303-3324 [20] Wang Z C, Li W T, Ruan S G. Traveling wave fronts in reaction-diffusion systems with spatio-temporal delays. J Differential Equations, 2006, 222:185-232 [21] Wang Z C, Wu J. Travelling waves of a diffusive Kermack-McKendrick epidemic model with non-local delayed transmission. Proc R Soc A, 2010, 466:237-261 [22] Weng P, Zhao X Q. Spreading speed and traveling waves for a multi-type SIS epidemics model. J Differential Equations, 2006, 229:270-296 [23] Widder D V. The Laplace Transform. Princeton:Princeton University Press, 1941 [24] Wu J. Theory and Applications of Partial Functional Differential Equations. New York:Springer, 1996 [25] Wu J H, Zou X F. Traveling wave fronts of reaction-diffusion systems with delays. J Dynam Differential Equations, 2001, 13:651-687; Erratum:J Dynam Differential Equations, 2008, 20:531-533 [26] Xu Z. Traveling waves in a Kermack-Mckendrick epidemic model with diffusion and latent period. Nonlinear Analysis, 2014, 111:66-81 [27] Ye Q, Li Z. Introduction to Reaction-Diffusion Equations. Beijing:Science Press, 1990 [28] Zhang T, Wang W. Existence of thaveling wave solutions for influenza model with treatment. J Math Anal Appl, 2014, 419:469-495 |