[1] Bowen R. Periodic points and measures for Axiom A diffeomorphisms. Trans Amer Math Soc, 1971, 154:377-397 [2] Kwietniak D, Łącka M, Oprocha P. A panorama of specification-like properties and their consequences. Contemporary Mathematics, 2016, 669:155-186 [3] Marcus B. A note on periodic points for ergodic toral automorphisms. Monatsh Math, 1980, 89:121-129 [4] 吴新星, 王建军. 关于P -极小动力系统的一些注记. 数学物理学报, 2016, 36A(5):879-885 Wu X, Wang J. Some remarks on P-minimal dynamical systems. Acta Mathematica Scientia, 2016, 36A(5):879-885 [5] 尹建东, 周作领. 熵极小动力系统的复杂性. 数学物理学报, 2015, 35A:29-35 Yin J D, Zhou Z L. The complexity of entropy-minimal dynamical systems. Acta Mathematica Scientia, 2015, 35A:29-35 [6] Gottschalk W H, Hedlund G A. Topological Dynamics. Providence, RI:Amer Math Soc, 1955 [7] Gottschalk W H. Minimal sets:an introduction to topological dynamics. Bull Amer Math Soc, 1958, 64:336-351 [8] Sigmund K. On minimal centers of attraction and generic points. J Reine Angew Math, 1977, 295:72-79 [9] Zhou Z L. Weakly almost periodic point and measure center. Science in China, 1993, 36:142-153 [10] Wu X, Oprocha P, Chen G. On various definitions of shadowing with average error in tracing. Nonlinearity, 2016, 29:1942-1972 [11] Kulczycki M, Kwietniak D, Oprocha P. On almost specification and average shadowing properties. Fund Math, 2014, 224:241-278 [12] Kwietniak D, Łącka M, Oprocha P. Generic points for dynamical systems with average shadowing. Monatsh Math, DOI:10.1007/s00605-016-1002-1 [13] 吴新星. 关于d-跟踪性质的一些注记. 中国科学:数学,2015, 45:273-286 Wu X. Some remarks on d-shadowing property. Sci Sin Math, 2015, 45:273-286 [14] Wu X, Wang J, Chen G. F-sensitivity and multi-sensitivity of hyperspatial dynamical systems. J Math Anal Appl, 2015, 429:16-26 [15] Wu X, Wang X. On the iteration properties of large deviations theorem. International Journal of Bifurcation and Chaos, 2016, 26:1650054 [16] Wu X. Chaos of transformations induced onto the space of probability measures. International Journal of Bifurcation and Chaos, 2016, 26:1650227 [17] Wang H, Wang L D. The weak specification property and distributional chaos. Nonlinear Analysis, 2013, 91:46-50 [18] Oprocha P. Invariant scrambled sets and distributional chaos. Dynamical Systems, 2009, 24:31-43 [19] Niu Y X. The average-shadowing property and strong ergodicity. J Math Anal Appl, 2011, 376:528-534 [20] Wang L D, Wang X, Lei F C, Liu H. Asymptotic average shadowing property, almost specification property and distributional chaos. Modern Physics Letters B, 2016, 30:1650001 |