数学物理学报 ›› 2017, Vol. 37 ›› Issue (3): 457-468.

• 论文 • 上一篇    下一篇

求解拉普拉斯方程柯西问题的截断赫尔米特展开方法

谢瓯1, 孟泽红2, 赵振宇1, 由雷1   

  1. 1. 广东海洋大学数学与计算机学院 广东湛江 524008;
    2. 浙江财经大学数学与统计学院 杭州 310018
  • 收稿日期:2016-09-27 修回日期:2017-01-21 出版日期:2017-06-26 发布日期:2017-06-26
  • 作者简介:谢瓯,E-mail:wozitianshanglai@163.com;孟泽红,E-mail:dongdongzb@gmail.com
  • 基金资助:
    国家自然科学基金(11201085)和广东海洋大学创新强校工程项目(2014050216)

A Truncation Method Based on Hermite Functions Expansion for a Cauchy Problem of the Laplace Equation

Xie Ou1, Meng Zehong2, Zhao Zhenyu1, You Lei1   

  1. 1. Faculty of Mathematics and Computer Science, Guangdong Ocean University, Guangdong Zhanjiang 524088;
    2 School of Mathematics and Statistics, Zhejiang University of Finance & Economics, Hangzhou 310018
  • Received:2016-09-27 Revised:2017-01-21 Online:2017-06-26 Published:2017-06-26
  • Supported by:
    Supported by the NSFC (11201085) and the Guandong Ocean University Innovation Strong School Projects (2014050216)

摘要: 该文研究一类拉普拉斯方程的柯西问题.为了获得稳定的数值解,采用了基于赫尔米特函数展开的截断方法来克服问题的不适定性.通过偏差原理选取截断参数并建立了相应的误差估计.数值结果同样显示方法是有效的.

关键词: 不适定问题, 拉普拉斯方程柯西问题, 偏差原理, 截断方法

Abstract: We investigate a Cauchy problem for the Laplace equation in this paper. To obtain a stable numerical solution for this ill posed problem, we present a truncation method based on Hermite functions expansion. Error estimate are obtained together with a discrepancy principle for the regularization parameter. Some numerical tests show that the method works effectively.

Key words: Ill-posed problem, Cauchy problem for Laplace equation, Regularization, Discrepancy principle, Truncation method

中图分类号: 

  • O124