[1] Chang S S,Joseph Lee H W,Chan C K.On Reich's strong convergence theorem for asymptotically nonexpansive mappings in Banach spaces.Nonlinear Analysis,2007,66:2364-2374 [2] Chidume C E,Chidume C O.Convergence theorem for zeros of generalized Lipschitz generalized φ-quasi-accretive operators.Proc Amer Math Soc,2005,134:243-251 [3] Hirano H,Huang Z.Convergence theorems for multi-valued φ-hemicontractive operators and phi-strongly accretive operators.Comput Math Appl,2003,46:1461-1471 [4] Xu Y G.Iterative processes with random errors for fixed point of φ-pseudocontractive operator.Rostock Math Kolloq,2005,59:87-97 [5] Chang S S,Cho Y J,Zhou H.Iterative Methods for Nonlinear Operator Equations in Banach Spaces.Huntington,NY:Nova Science Publishers,2002 [6] Gu F.Convergence theorem for φ-pseudo contractive type mappings in normed linear spaces.Northeast Math J,2001,17:340-346 [7] Osilike M O.Stability of the Mann and Ishikawa iteration procedures for φ-strong pseudocontractions and nonlinear equations of the φ-strong accretive type.J Math Anal Appl,1998,227:319-334 [8] Chidume C E,Chidume C O.Convergence theorem for fixed points of uniformly continuous generalized φ-hemicontactive mappings.J Math Anal Appl,2005,303:545-554 [9] Zhou H Y,Chang S S,Cho Y J.Weak stability of the Ishikawa iteration procedures for φ-hemicontractions operators.Appl Math Lett,2001,14:949-954 [10] Gu F.Necessary and sufficient condition of the strong convergence for two finite families of uniformly L-Lipschitzain mappings.Acta Math Sci,2011,31B(5):2058-2066 [11] Kim J K,Cho S Y,Qin X.Some results on generalized equilibrium problems involving strictly pseudocon-tractive mappings.Acta Math Sci,2011,31B(5):2041-2057 [12] Cho S Y,Kang S M.Approximation of common solutions of variational inequalities via strict pseudocon-tractions.Acta Math Sci,2012,32B(4):1607-1618 [13] Shehu Y.Approximation of fixed points and variational solutions for pseudo-contractive mappings in Banach spaces.Acta Math Sci,2014,34B(2):409-423 |