[1] Samoilenko A M, Perestyuk N A. Impulsive Differential Equations. Singapore:World Science, 1995
[2] Choisy M, Guégan J F, Rohani P. Dynamics of infectious diseases and pulse vaccination:Teasing apart the embedded resonance effects. Physica D, 2006, 223:26-25
[3] Gao S, Chen L, Nieto J J, Torres A. Analysis of a delayed epidemic model with pulse vaccination and saturation incidence. Vaccine, 2006, 24:6037-6045
[4] D'Onofrio A. On pulse vaccination strategy in the SIR epidemic model with vertical transmission. Appl Math Lett, 2005, 18:729-732
[5] Dai B, Su H, Hu D. Periodic solution of a delayed ratio-dependent predator-prey model with monotonic functional response and impulse. Nonlinear Anal TMA, 2009, 70:126-134
[6] Georescu P, Morosanu G. Pest regulation by means of impulsive controls. Appl Math Comput, 2007, 190:790-803
[7] Jiang G, Lu Q, Qian L. Complex dynamics of a holling type II prey-predator system with state feedback control. Chaos Solitons Fractals, 2007, 31:448-461
[8] Shen J, Li J. Existence and global attractivity of positive periodic solutions for impulsive predator-prey model with dispersion and time delays. Nonlinear Anal RWA, 2009, 10:227-243
[9] Prado A. Bi-impulsive control to build a satellite constellation. Nonlinear Dyn Syst Theory, 2005, 5:169-175
[10] Liu X, Willms A R. Impulsive controllability of linear dynamical systems with applications to maneuvers of spacecraft. Math Probl Eng, 1996, 2:277-299
[11] George P K, Nandakumaran A K, Arapostathis A. A note on controllability of impulsive systems. J Math Anal Appl, 2000, 241:276-283
[12] Lenci S, Rega G. Periodic solutions and bifurcations in an impact inverted pendulum under impulsive excitation. Chaos Solitons Fractals, 2000, 11:2453-2472
[13] Nenov S. Impulsive controllability and optimization problems in population dynamics. Nonlinear Anal, 1999, 36:881-890
[14] Guan Z, Chen G, Ueta T. On impulsive control of a periodically forced chaotic pendulum system. IEEE Trans Automat Control, 2000, 45:1724-1727
[15] Li J, Nieto J J, Shen J. Impulsive periodic boundary value problems of first-order differential equations. J Math Anal Appl, 2007, 325:226-236
[16] Agarwal R P, Franco D, O'Regan D. Singular boundary value problems for first and second order impulsive differential equations. Aequationes Math, 2005, 69:83-96
[17] Luo Z, Nieto J J. New results for the periodic boundary value problem for impulsive integro-differential equations. Nonlinear Anal TMA, 2009, 70:2248-2260
[18] Ahmad B, Nieto J J. Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions. Nonlinear Anal TMA, 2008, 69:3291-3298
[19] Nieto J J. Impulsive resonance periodic problems of first order. Appl Math Lett, 2002, 15:489-493
[20] Nieto J J, Rodriguez-Lopez R. Periodic boundary value problem for non-Lipschitzian impulsive functional differential equations. J Math Anal Appl, 2006, 318:593-610
[21] Li J, Nieto J J. Existence of positive solutions for multipoint boundary value problem on the half-line with impulses. Boundary Value Problem, 2009, Article ID:834158
[22] Li J, Shen J. Positive solutions for three-point boundary value problems for second-order impulsive differential equations on infinite intervals. J Comput Appl Math, 2011, 235:2372-2379
[23] Chu J, Nieto J J. Impulsive periodic solutions of first-order singular differential equations. Bulle London Math Soc, 2008, 40:143-150
[24] Qian D, Li X. Periodic solutions for ordinary differential equations with sublinear impulsive effects. J Math Anal Appl, 2005, 303:288-303
[25] He Z, He X. Monotone iterative technique for impulsive integro-differential equations with periodic boundary conditions. Computers and Mathematics with Applications, 2004, 48:73-84
[26] He Z, Yu J. Periodic boundary value problem for first-order impulsive functional differential equations. J Comput Appl Math, 2002, 138:205-217
[27] Bonanno G, Marano S A. On the structure of the critical set of non-differentiable functions with a weak compactness condition. Appl Anal, 2010, 89:1-10
[28] Bonanno G, Riccobono G. Multiplicity results for Sturm-Liouville boundary value problems. Appl Math Comput, 2009, 210:294-297
[29] Zeidler E. Nonlinear Functional Analysis and its Applications. Berlin:Springer, 1990
[30] Nieto J J, O'Regan D. Variational approach to impulsive differential equations. Nonlinear Anal RWA, 2009, 10:680-690
[31] Tian Y, Ge W. Applications of variational methods to boundary-value problem for impulsive differential equations. Proc Edinb Math Soc, 2008, 51:509-527
[32] Sun J, Chen H. Variational method to the impulsive equation with Neumann boundary conditions. Boundary Value Problem, 2009, Article ID:316812
[33] Chen H, Li J. Variational approach to impulsive differential equations with Dirichlet boundary conditions. Boundary Value Problem, 2010, Article ID:325415
[34] Chen H, Sun J. An application of variational method to second-order impulsive differential equation on the half-line. Appl Math Comput, 2010, 217:1863-1869
[35] D'Aguí G. Existence of three solutions for a Neumann boundary value problem. Communications to SIMAI Congress. 2009, DOI:10.1685/CSC09193
[36] Sun J, Li W, Cheng S. Three positive solutions for second-order Neumann boundary value problems. Appl Math Letters, 2004, 17:1079-1084
[37] Bonanno G, D'Aguí G. A Neumann boundary value problem for the Sturm-Liouville equation. Appl Math Comput, 2009, 208:318-327
[38] Sun J, Li W. Multiple positive solutions to second-order Neumann boundary value problems. Appl Math Comput, 2003, 146:187-194 |