[1] Wu Z Q, Zhao J N, Yin J X, et al. Nonlinear Diffusion Equations. Singapore:World Scientific, 2001
[2] Tan Z. Non-Newton filtration equation with special medium void. Acta Math Sci, 2004, 24B(1):118-128
[3] Zhou J. A multi-dimension blow-up problem to a porous medium diffusion equation with special medium void. Appl Math Lett, 2014, 30:6-11
[4] Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14(4):349-381
[5] Sattinger D H. On global solution of nonlinear hyperbolic equations. Arch Rat Mech Anal, 1968, 30(2):148-172
[6] Payne L E, Sattinger D H. Sadle points and instability of nonlinear hyperbolic equations. Israel J Math, 1975, 22(3):273-303
[7] Tsutsumi M. On solutions of semilinear differential equations in a Hilbert space. Math Japan, 1972, 17:173-193
[8] Tsutsumi M. Existence and nonexistence of global solutions for nonlinear parabolic equations. Publ RTMS, 1972/73, 8:211-229
[9] Ikehata R. Some remarks on the wave equations with nonlinear damping and source terms. Nonlinear Anal, 1996, 27(10):1165-1175
[10] Lions J L. Quelques Méthodes de Résolution des Problémes aux Limites Nonlinéaires. Paris:Dunod, 1969
[11] Nakao M, Ono K. Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations. J Math Z, 1993, 214(2):325-342
[12] Ono K. Global existence, asymptotic behaviour, and global non-existence of solutions for damped non-linear wave equations of Kirchhoff type in the whole space. Math Methods Appl Sci, 2000, 23(6):535-560
[13] Vitillaro E. A potential well theory for the wave equation with nonlinear source and boundary damping terms. Glasgow Math J, 2002, 44(3):375-395
[14] Esquivel-Avila J A. A characterization of global and nonglobal solutions of nonlinear wave and Kirchhoff equations. Nonlinear Anal, 2003, 52(4):1111-1127
[15] Esquivel-Avila J A. The dynamics of a nonlinear wave equation. J Math Anal Appl, 2003, 279(1):135-150
[16] Cavalcanti M M, Domingos Cavalcanti V N. Existence and asymptotic stability for evolution problem on manifolds with damping and source terms. J Math Anal Appl, 2004, 291:109-127
[17] Cavalcanti M M, Domingos Cavalcanti V N, Martinez P. Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term. J Differ Equations, 2004, 203:119-158
[18] Esquivel-Avila J A. Qualitative analysis of a nonlinear wave equation. Discrete Contin Dyn Syst, 2004, 10(3):787-804
[19] Gan Z H, Zhang J. Instability of standing waves for Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions. J Math Anal Appl, 2005, 307(1):219-231
[20] Wang Y D. Finite time blow-up and global solutions for fourth order damped wave equations. J Math Anal Appl, 2014, 418(2):713-733
[21] Liu Y C. On potential wells and vacuum isolating of solutions for semilinear wave equations. J Differ Equations, 2003, 192(1):155-169
[22] Liu Y C, Zhao J S. On potential wells and applications to semilinear hyperbolic equations and parabolic equations. Nonlinear Anal, 2006, 64(12):2665-2687
[23] Liu Y C, Xu R Z, Yu T. Global existence, nonexistence and asymptotic behavior of solutions for the Cauchy problem of semilinear heat equations. Nonlinear Anal, 2008, 68(11):3332-3348
[24] Liu Y C, Xu R Z. Potential well method for Cauchy problem of generalized double dispersion equations. J Math Anal Appl, 2008, 338(2):1169-1187
[25] Liu Y C, Xu R Z. Global existence and blow up of solutions for Cauchy problem of generalized Boussinesq equation. Physica D, 2008, 237(6):721-731
[26] Liu Y C, Xu R Z. A class of fourth order wave equations with dissipative and nonlinear strain terms. J Differ Equations, 2008, 244(1):200-228
[27] Xu R Z, Liu Y C. Asymptotic behavior of solutions for initial-boundary value problems for strongly damped nonlinear wave equations. Nonlinear Anal, 2008, 69}(8):2492-2495
[28] Xu R Z. Asymptotic behavior and blow up of solutions for semilinear parabolic equations at critical energy level. Math Comput Simulat, 2009, 80}(4):808-813
[29] Xu R Z, Liu Y C. Global existence and blow-up of solutions for generalized pochhammer-chree equations. Acta Math Sci, 2010, 30B(5):1793-1807
[30] Xu R Z, Yang Y B. Global existence and asymptotic behaviour of solutions for a class of fourth order strongly damped nonlinear wave equations. Quart Appl Math, 2013, 71}(3):401-415
[31] Xu R Z, Su J. Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations. J Funct Anal, 2013, 264(12):2732-2763
[32] Xu R Z, Ding Y H. Global solutions and finite time blow up for damped Klein-Gordon equation. Acta Math Sci, 2013, 33B}(3):643-652
[33] Xu R Z, Yang Y B, Liu B W, et al. Global existence and blowup of solutions for the multidimensional sixth-order "good" Boussinesq equation. Z Angew Math Phys, 2015, 66(3):955-976
[34] Vitillaro E. Global nonexistence theorems for a class of evolution equations with dissipation. Arch Rational Mech Anal, 1999, 149(2):155-182
[35] Aubin J P. Un théoréme de compacité. C R Acad Sci Paris, 1963, 256:5042-5044 |