[1] Cazenave T. Semilinear Schrödinger Equations. Providene:Amer Math Soc, 2003
[2] Deng K, Levine H A. The role of critical exponents in blow-up theorems:the sequel. J Math Anal Appl, 2000, 243}:85-126
[3] Fino A Z, Georgiev V, Kirane M. Finite time blow-up for a wave equation with a nonlocal nonlinearity. 2010, arXiv:1008.4219vl
[4] Germain P, Masmoudi N, Shatah J. Global solution for 2D quadratic Schrödinger equations. J Math Pures Appl, 2012, 97}:505-543
[5] Ikeda M. Lifespan of solutions for the nonlinear Schrödinger equation without gauge invariance. 2012, arXiv:1211.6928
[6] Ikeda M, Wakasugi Y. Small-data blow up of L2-solution for the nonlinear Schrödinger equation without gauge invariance. Differential Integral Equation, 2013, 26}:1275-1285
[7] Ikeda M, Inui T. Small-data blow up of L2 or H1-solution for the similinear Schrödinger equation without gauge invariance. Journal of Evolution Equations, 2015, 15}:571-581
[8] Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. Amsterdam:Elsevier Science, 2006
[9] Kuiper H J. Life span of nonegative solutions to certain qusilinear parabolic cauchy problems. Electronic J Diff Eqs, 20032003}:1-11
[10] Levine H. The role of critical exponents in blowup theorems. SIAM Rev, 1990, 32}:262-288
[11] Oh T. A blow up result for the periodic NLS without gauge invariance. C R Acad Sci Paris, 2012, 350}:389-392
[12] Ozawa T, Sunagawa H. Small data blow-up for a system of nonlinear Schrödinger equations. J Math Anal Appl, 2013, 399}:147-155
[13] Strauss W A. Nonlinear scattering theory at low energy. J Funct Anal, 1981, 41}:110-133
[14] Sun F Q. Life span of blow-up solutions for higher-order semilinear parabolic equations. Electronic J Diff Eqs, 2010, 2010}:1-9
[15] Todorova G, Yordanov B. Critical exponent for a nonlinear wave equation with damping. J Diff Eqs, 2001, 174}:464-489
[16] Tsutsumi Y. L2-solutions for nonlinear Schrödinger equations and nonlinear groups. Funkcialaj Ekvacioj, 1987, 30}:115-125
[17] Zhang Q S. A blow-up result for a nonlinear wave equations with damping:the critical case. C R Acad Sci Paris Sér I Math, 2001, 333}:109-114
[18] Zhang Q S. Blow-up results for nonlinear parabolic equations on manifolds. Duke Math J, 1999, 97}:515-539 |