数学物理学报 ›› 2016, Vol. 36 ›› Issue (4): 649-655.

• 论文 • 上一篇    下一篇

Jacobi算子的Hardy不等式及其应用

何瑞瑞, 刘恒兴   

  1. 武汉大学数学与统计学院 武汉 430072
  • 收稿日期:2015-12-07 修回日期:2016-05-29 出版日期:2016-08-26 发布日期:2016-08-26
  • 作者简介:何瑞瑞,herrmath@163.com;刘恒兴,hxliu.math@whu.edu.cn
  • 基金资助:

    国家自然科学基金(11501103)资助

Hardy Inequalities for Jacobi Operators and Applications

He Ruirui, Liu Hengxing   

  1. School of Mathematics and Statistics, Wuhan University, Wuhan 430072
  • Received:2015-12-07 Revised:2016-05-29 Online:2016-08-26 Published:2016-08-26
  • Supported by:

    Supported by the NSFC(11501103)

摘要:

该文主要考虑与Jacobi算子相关的Hardy不等式. 主要结果之一是求得了相关不等式的最佳常数. 作为该不等式的应用之一,该文证明了,不同于欧式空间情形,双曲空间上的Hardy 不等式可以整体的增添Brezis-Vázquez型余项.

关键词: Jacobi算子, Hardy不等式, 双曲空间

Abstract:

In this paper we consider the Hardy inequalities for Jacobi operators. We compute the sharp constants of these inequalities. As an application, we show the Hardy inequalities on hyperbolic spaces can be globally refined by adding remainder terms like the Brezis-Vázquez improvement, which is contrary to the case of Euclidean spaces.

Key words: Jacobi operator, Hardy inequality, Hyperbolic space

中图分类号: 

  • O152.5