数学物理学报 ›› 2016, Vol. 36 ›› Issue (4): 601-622.

• 论文 •    下一篇

抽象多项Riemann-Liouville分数阶微分方程

Marko Kosti?1, 李成刚2, 李淼3   

  1. 1. University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovica 6, 21125 Novi Sad, Serbia;
    2. 西南交通大学峨眉校区基础课部 四川峨眉山 614202;
    3. 四川大学数学学院 成都 610065
  • 收稿日期:2015-09-21 修回日期:2016-05-13 出版日期:2016-08-26 发布日期:2016-08-26
  • 通讯作者: 李淼 E-mail:limiao1973@hotmail.com
  • 作者简介:Marko Kostić,marco.s@verat.net;李成刚,lichenggang@home.swjtu.edu.cn
  • 基金资助:

    174024 of Ministry of Science and Technological Development,Republic of Serbia、国家自然科学基金(11371263)和教育部新世纪优秀人才基金资助

Abstract Multi-Term Fractional Differential Equations with Riemann-Liouville Derivatives

Marko Kosti?1, Li Chenggang2, Li Miao3   

  1. 1. University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovi?a 6, 21125 Novi Sad, Serbia;
    2. Department of Foundational Courses, Southwest Jiaotong University-Emei, Sichuan Emeishan 614202;
    3. Department of Mathematics, Sichuan University, Chengdu 610065
  • Received:2015-09-21 Revised:2016-05-13 Online:2016-08-26 Published:2016-08-26
  • Supported by:

    Supported by the 174024 of Ministry of Science and Technological Development,Republic of Serbia,the NSFC(11371263) and the Program for New Century Excellent Talents in University of China

摘要:

该文研究如下抽象多项分数阶微分方程
Dtαnut)+AjDtαjut)=ADtαut)+ft),t∈(0,τ),(0.1)
其中n∈N\{1},算子A,A1,…,An-1为复Banach空间E上的闭线性算子,0≤α1<…<αn,0≤α<αn,0<τ≤∞,ft)为E-值函数,Dtα表示α阶Riemann-Liouville分数阶导数[5]. 延续着作者先前在文献[22,24-25]和[34]中的研究工作,该文引入并系统分析 方程(0.1)的若干类新的k-正则(C1C2)-存在和唯一(生成)族,并对抽象的理论性结果给出了丰富的例子来阐明.

关键词: 抽象多项分数阶微分方程, Riemann-Liouville分数阶导数, (a, k)-正则C-豫解族, 适定性

Abstract:

In this paper, we investigate the following abstract multi-term fractional differential equation
Dtαnut)+AjDtαju(t)=ADtαu(t)+f(t),t∈(0,τ),
where n∈N\{1}, A and A1,…,An-1 are closed linear operators on a complex Banach space E, 0≤α1<…<αn, 0≤α<αn, 0<τ≤∞, f(t) is an E-valued function, and Dtα denotes the Riemann-Liouville fractional derivative of order α ([5]). We introduce and systematically analyze several new types of k-regularized (C1,C2)-existence and uniqueness (propagation) families for (0.1), continuing in such a way our previous researches raised in [22, 24-25] and [34]. Plenty of various examples illustrates our abstract results.

Key words: Abstract multi-term fractional differential equations, Riemann-Liouville fractional derivatives, (a,k)-Regularized C-resolvent families, Well-posedness

中图分类号: 

  • O175.2