数学物理学报 ›› 2016, Vol. 36 ›› Issue (3): 500-506.

• 论文 • 上一篇    下一篇

带有Hardy和Sobolev-Hardy临界指标项的扰动椭圆方程的解

张靖   

  1. 内蒙古师范大学数学科学学院 呼和浩特 010022
  • 收稿日期:2015-11-21 修回日期:2016-04-06 出版日期:2016-06-26 发布日期:2016-06-26
  • 作者简介:张靖,jinshizhangjing@eyou.com
  • 基金资助:

    国客自然科学基金(11571187)

Positive Solutions of Perturbation Elliptic Equation Involving Hardy Potential and Critical Sobolev-Hardy Exponent

Zhang Jing   

  1. College of Mathematics Science, Inner Mongolia Normal University, Hohhot 010022
  • Received:2015-11-21 Revised:2016-04-06 Online:2016-06-26 Published:2016-06-26
  • Supported by:

    Supported by the NSFC (11571187)

摘要:

考虑如下带有Hardy和Sobolev-Hardy临界指标项的扰动椭圆方程
u-μ((u)/(|x|2))+λa(x)uq=((|u|2*(s)-2)/(|x|s))ux∈RN,       (0.1)
u>0,  uD1,2(RN),
这里2*(s)=(2(N-s))/(N-2)是Sobolev-Hardy临界指标,N≥3, λ∈R, 0 ≤ s < 2, 1 < q < 2*-1, 0 ≤ μ < μ = ((N-2)2)/4), a(x)∈ C (RN). 在|λ|足够小的情况下,应用临界点理论中的扰动方法来得到方程(0.1)正解的存在性. 接下来考虑anisotropic椭圆方程
-div[(1+λb(x))▽u]+λa(x)uq=μ(u)/(|x|2)+(|u|2*(s)-2)/(|x|s)u, x∈RN, (0.2)
u>0, uD1,2(RN),
b(x)∈C(RN). 在|λ|足够小的情况下,应用临界点理论中的扰动方法来得到方程(0.2)正解的存在性.

关键词: 扰动方程, Sobolev-Hardy临界指标, 正解

Abstract:

In this paper, we are concerned with the following elliptic equation involving critical Sobolev-Hardy exponent
u-μ(u)/(|x|2)+λa(x)uq=(|u|2*(s)-2)/(|x|s)u,x∈RN,(0.1)
u>0,uD1,2(RN),
where 2*(s)=(2(N-s))/(N-2) is the critical Sobolev-Hardy exponent, N ≥ 3, λ∈R, 0 ≤ s < 2, 1 < q < 2*-1, 0 ≤ μ < μ=((N-2)2)/(4), a(x)∈C(RN). We firstly use an abstract perturbation method in critical point theory to obtain the existence results of positive solutions of the equation for small value of|λ|. Secondly, we focus on an anisotropic elliptic equation of the form 
-div[(1+λb(x))▽u]+λa(x)uq=μ(u)/(|x|2)+(|u|2*(s)-2)/(|x|s)u,x∈RN,(0.2)
u>0,uD1,2(RN),
The same abstract method is used to yield existence result of positive solutions of the equation for small value of |λ|.

Key words: Perturbed, Critical Sobolev-Hardy Exponent, Positive Solution

中图分类号: 

  • O175.2