数学物理学报 ›› 2016, Vol. 36 ›› Issue (3): 462-472.

• 论文 • 上一篇    下一篇

脉冲时滞中立双曲型方程组的振动性

马晴霞1,2, 刘安平2   

  1. 1 中国科学院武汉物理与数学研究所 武汉 430071;
    2 中国地质大学(武汉)数学与物理学院 武汉 430074
  • 收稿日期:2015-09-21 修回日期:2016-04-12 出版日期:2016-06-26 发布日期:2016-06-26
  • 作者简介:马晴霞,maqx@163.com;刘安平,wh_apliu@sina.com
  • 基金资助:

    国家自然科学基金(11201436)和中国地质大学(武汉)生物地质和环境地质重点实验室基金资助

Oscillation of Neutral Impulsive Hyperbolic Systems with Deviating Arguments

Ma Qingxia1,2, Liu Anping2   

  1. 1 Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071;
    2 School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074
  • Received:2015-09-21 Revised:2016-04-12 Online:2016-06-26 Published:2016-06-26
  • Supported by:

    Supported by the NSFC (11201436) and the State Key Laboratory of Biogeology and Environmental Gelogy, China University of Geosciences (Wuhan)

摘要:

研究一类非线性脉冲时滞双曲型方程组在Robin以及Dirichlet边界条件下的振动性质. 利用广义的Riccati变换、平均值方法及不等式技巧,获得了方程组在两类边界条件下振动的充分条件,并给出了应用实例用以检验结论的有效性.

关键词: 非线性, 脉冲, 时滞, 偏微分方程组, 振动

Abstract:

Oscillatory properties of systems of neutral type impulsive hyperbolic equations with several deviating arguments under the Robin boundary condition and the Dirichlet boundary condition are investigated, and several new sufficient conditions for oscillation are presented. The main results are illustrated by one example.

Key words: Nonlinear, Impulsive, Delay, Partial differential systems, Oscillation

中图分类号: 

  • O175.4