[1] Bardina X, Florit C. Approximation in law to the d-parameter fractional Brownian sheet based on the functional invariance principle. Rev Mat Iberoamericana, 2005, 21:1037-1052
[2] Bardina X, Jolis M, Tudor C A. Weak convergence to the fractional Brownian sheet and other two-parameter Gaussian processes. Statist Probab Lett, 2003, 65:317-329
[3] Biagini F, Hu Y, Øksendal B, Zhang T. Stochastic Calculus for Fractional Brownian Motion and Applications. London:Springer, 2008
[4] Bickel P J, Wichura M J. Convergence criteria for multiparameter stochastic processes and some applications. Ann Math Statist, 1971, 42:1656-1670
[5] Ciesielski Z, Kamont A. Lévy's fractional Brownian random field and function spaces. Acta Sci Math (Szeged), 1995, 60:99-118
[6] Davydov Y. The invariance principle for stationary processes. Teor Verojatn Primen, 1970, 15:498-509
[7] Decreusefond L, Üstünel A S. Stochastic analysis of the fractional Brownian motion. Potential Anal, 1999, 10:177-214
[8] Delgado R, Jolis M. Weak approximation for a class of Gaussian processes. J Appl Probab, 2000, 37:400-407
[9] Enriquez N. A simple construction of the fractional Brownian motion. Stochastic Process Appl, 2004, 109:203-223
[10] Gradinaru M, Nourdin I, Russo F, Vallois P. m-Order integrals and generalized Itô's formula; the case of a fractional Brownian motion with any Hurst index. Ann Inst H Poincaré Probab Statist, 2005, 41:781-806
[11] Hu Y. Integral Transformations and Anticipative Calculus for Fractional Brownian Motions. New York:Memoirs Amer Math Soc, 2005
[12] Kamont A. On the fractional anisotropic Wiener field. Probab Math Statist, 1996, 16:85-98
[13] Li Y, Dai H. Approximations of fractional Brownian motion. Bernoulli, 2011, 17:1195-1216
[14] Mishura Y S. Stochastic Calculus for Fractional Brownian Motion and Related Processes. Berlin:Springer, 2008
[15] Meyer Y, Sellan F, Taqqu M S. Wavelets, generalized white noise and fractional integration:the synthesis of fractional Brownian motion. J Fourier Anal Appl, 1999, 5:465-494
[16] Nieminen A. Fractional Brownian motion and martingale-differences. Statist Probab Lett, 2004, 70:1-10
[17] Nualart D. Malliavin Calculus and Related Topics. 2nd edition. Berlin:Springer, 2006
[18] Nzi M, Mendy I. Approximation of fractional Brownian sheet by a random walk in anisotropic Besov space. Random Oper Stoch Equ, 2007, 15:137-154
[19] Sottinen T. Fractional Brownian motion, random walks and binary market models. Finance Stoch, 2001, 5:343-355
[20] Taqqu M S. Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z Wahrsch Verw Gebiete, 1975, 31:287-302
[21] Tudor C A. Weak convergence to the fractional Brownian sheet in Besov spaces. Bull Braz Math Soc (New Series), 2003, 34:389-400
[22] Wang Z, Yan L, Yu X. Weak approximation of the fractional Brownian sheet from random walks. Electron Commun Probab, 2013, 18:1-13
[23] Wang Z, Yan L, Yu X. Weak convergence to the fractional Brownian sheet using martingale differences. Statist Probab Lett, 2014, 92:72-78 |