[1] Chua C B, Yi P. A continuation method for nonlinear complementarity problems over symmetric cones. SIAM Journal on Optimization, 2010, 20: 2560-2583
[2] Fang L, He G P, Hu Y H. A new smoothing Newton-type method for second-order cone programming problems. Applied Mathematics and Computation, 2009, 215: 1020-1029
[3] Huang Z H, Ni T. Smoothing algorithms for complementarity problems over symmetric cones. Comput Optim Appl, 2010, 45: 557-579
[4] Kong L C, Sun J, Xiu N H. A regularized smoothing Newton method for symmetric cone complementarity problems. SIAM Journal on Optimization, 2008, 19: 1028-1047
[5] Liu X H, Huang Z H. A smoothing Newton algorithms based on one-parametric class of smoothing functions for linear programming over symmetric cones. Mathematical Methods of Operations Research, 2009, 70: 385-404
[6] Ni T, Gu W Z. Smoothing Newton algorithm for symmetric cone complementarity problems based on a one-parametric class of smoothing functions. Journal of Applied Mathematics and Computing, 2011, 35: 73-92
[7] Rui S P, Xu C X. A smoothing inexact Newton method for nonlinear complementarity problems. Journal of Computational and Applied Mathematics, 2010, 233: 2332-2338
[8] Li M X, Che H T. A smoothing inexact Newton method for generalized nonlinear complementarity problem. Mathematical Problems in Engineering, 2012, Article ID 401835, 17 pages
[9] Facchinei F, Kanzow C. A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems. Mathematical Programming, 1997, 76: 493-512
[10] Faraut J. Analysis on Symmetric Cones. Oxford: Oxford University Press, 1994
[11] Sun D, Sun J. Strong semismoothness of Fischer-Burmeister SDC and SOC complementarity functions. Mathematical Programming, 2005, 103: 575-581
[12] Yoshise A. Interior point trajectories and a homogeneous model for non-linear complernentarity problems over symmetric cones. SIAM J Optirn, 2006, 17: 1129-1153
[13] Tao J, Gowda M S. Some P-properties for nonlinear transformations on Euclidean Jordan algebras. Mathematics of Operations Research, 2005, 30: 985-1004
[14] Liu Lixia, Liu Sanyang. A new smoothing Newton method for symmetric cone complementarity problems. Algorithmic Aspects in Information and Management Lecture Notes in Computer Science, 2010, 6124: 199-208 |