[1] Hale J K, Lunel S V. Introduction to Functional Differential Equations. New York: Springer-Verlag, 1993
[2] Leighton W. The detection of the oscillations of solutions of a second order linear differential equation. Duke Math J, 1950, 17: 57-62
[3] Grammatikopoulos M K, Ladas G, Meimaridou A. Oscillations of second order neutral delay differential equations. Rad Math, 1985, 1: 267-274
[4] Sun Y G, Meng F W. Note on the paper of Dzurina and Stavroulakis. Appl Math Comput, 2006, 174: 1634-1641
[5] Liu H D, Meng F W, Liu P H. Oscillation and asymptotic analysis on a new generalized Emden-Fowler equation. Appl Math Comput, 2012, 219: 2739-2748
[6] Agarwal R P, Shieh S L, Yeh C C. Oscillation criteria for second order retarded differential equations. Math Comput Modelling, 1997, 26: 1-11
[7] Baculikova B, Li T, Dzurina J. Oscillation theorems for second order super-linear neutral differential equations. Mathematica Slovaca, 2013, 63: 123-134
[8] Dong J G. Oscillation behavior of second-order nonlinear neutral differential equations with deviating arguments. Comput Math Appl, 2010, 59: 3710-3717
[9] Erbe L, Hassan T S, Peterson A. Oscillation of second-order neutral differential equations. Adv Dynam Syst Appl, 2008, 3: 53-71
[10] Liu L, Bai Y. New oscillation criteria for second order nonlinear delay neutral differential equations. J Comput Appl Math, 2009, 231: 657-663
[11] Li T, Han Z, Zhang C, Sun S. On the oscillation of second order Emden-Fowler neutral differential equations. J Appl Math Comput, 2011, 37: 601-610
[12] Tiryaki A. Oscillation criteria for a certain second order nonlinear differential equations with deviating arguments. EJQTDE, 2009, 61: 1-11
[13] Dzurina J, Stavroulalik I P. Oscillation criteria for second order delay differential equations. Appl Math Comput, 2003, 140: 445-453
[14] Wang X L, Meng F W. Oscillation criteria of second order quasi-linear neutral delay differential equations. Math Comput Modell, 2007, 46: 415-421
[15] Xu R, Meng F W. Oscillation criteria for second order quasi-linear neutral delay differential equations. Appl Math Comput, 2007, 192: 216-222
[16] 李同兴, 韩振来, 张承慧, 孙一冰. 时间尺度上三阶 Emden-Fowler 时滞动力方程振动准则. 数学物理学报, 2012, 32A: 222-232
[17] 曾云辉, 俞元洪. 三阶半线性时滞微分方程的振动定理. 系统科学与数学, 2014, 34(2): 231-237 |