[1] Date E. On quasi-periodic solutions of the field equation of the classical massive Thirring model. Prog Theor Phys, 1978, 59(1): 265-273
[2] Tracy E R, Chen H H, Lee Y C. Study of quasiperiodic solutions of the nonlinear Schrodinger equation and the nonlinear modulational instability. Phys Rev Lett, 1984, 53: 218-221
[3] Cao C W, Wu Y T, Geng X G. Relation between the Kadometsev-Petviashvili equation and the confocal involutive system. Journal of Mathematical Physics, 1999, 40(8): 3948-3970
[4] Geng X G, Wu Y T, Cao C W. Quasi-periodic solutions of the modified Kadomtsev-Petviashvili equation. Journal of Physics A-Mathematical and General, 1999, 32(20): 3733-3742
[5] Geng X G, Wu Y T. Finite-band solutions of the classical Boussinesq-Burgers equations. Journal of Mathematical Physics, 1999, 40(6): 2971-2982
[6] Geng X G, Dai H H. Algebro-geometric solutions of (2+1)-dimensional coupled modified Kadomtsev-Petviashvili equations. Journal of Mathematical Physics, 2000, 41(1): 337-348
[7] Dai H H, Fan E G. Variable separation and algebro-geometric solutions of the Gerdjikov-lvanov equation. Chaos Solitons and Fractal, 2004, 22(1): 93-101
[8] Qiao Z J. Generalized r-matrix structure and algebro-geometric solution for integrable system. Reviews in Mathematical Physics, 2001, 13(5): 545-586
[9] Wang J. Algebro-geometric solutions for some (2+1)-dimensional discrete systems. Nonlinear Analysis-Real World Applications, 2008, 9(5): 1837-1850
[10] Zhou R G. The finite-band solution of the Jaulent-Miodek equation. Journal of Mathematical Physics, 1997, 38(5): 2535-2546
[11] 孙玉娟,丁琦,梅建琴,张鸿庆. D-AKNS方程的代数几何解. 数学物理学报, 2013, 33(2): 276-284
[12] Xia T C, Chen X H. A new Lax integrable hierarchy, bi-Hamiltonian structure and finite dimensional Liouville integrable involutive systems. Chaos, Solitons and Fractals, 2004, 22(4): 939-945
[13] Fan E G. Integrable evolution systems based on Gerdjikov-Ivanov equations, bi-Hamiltonian structure, finite-dimensional integrable systems and N-fold Darboux transformation. Journal of Mathematical Physics, 2000, 41(11): 7769-7782 |