数学物理学报 ›› 2015, Vol. 35 ›› Issue (3): 534-544.

• 论文 • 上一篇    下一篇

一个2+1维可积方程的代数几何解

陈晓红1,2, 张大庆1, 张鸿庆2, 尤福财3   

  1. 1. 辽宁科技大学理学院 辽宁 鞍山 114051;
    2. 大连理工大学数学科学学院 辽宁 大连 116024;
    3. 沈阳工程学院基础教学部 沈阳 110136
  • 收稿日期:2013-12-06 修回日期:2014-10-21 出版日期:2015-06-25 发布日期:2015-06-25
  • 通讯作者: 陈晓红, xhchspring@163.com E-mail:xhchspring@163.com
  • 作者简介:张大庆, dq_zhang@163.com;张鸿庆, zhanghq@dlut.edu.cn;尤福财, fcyou2008@yahoo.com.cn
  • 基金资助:

    国家自然科学基金(61273011, 11401392)资助

Algebro-Geometric Solutions of A -Dimensional Integrable Equation

Chen Xiaohong1,2, Zhang Daqing1, Zhang Hongqing2, You Fucai3   

  1. 1 School of Science, University of Science and Technology LiaoNing, Liaoning Anshan 114051;
    2 School of Mathematical Sciences, Dalian University of Technology, Liaoning Dalian 116024;
    3 Department of Basic Sciences, Shenyang Institute of Engineering, Shenyang 110136
  • Received:2013-12-06 Revised:2014-10-21 Online:2015-06-25 Published:2015-06-25

摘要:

该文从 1+1 维的孤子方程出发, 构造出一个2+1维在 Lax 意义下可积的方程. 接着这个 2+1 维可积方程被分解为可解的常微分方程. 随后引入超椭圆 Riemann 曲面和 Abel-Jacobi 坐标把流进行了拉直. 再利用 Riemann θ 函数给出了这个 2+1 维方程的代数几何解.

关键词: 代数几何解, Abel-Jacobi 坐标, Riemann θ 函数

Abstract:

In this paper, a (2+1)-dimensional integrable equation is presented with the help of (1+1)-dimensional soliton equations. The (2+1)-dimensional integrable equation is decomposed into solvable ordinary differential equations. A hyperelliptic Riemann surface and Abel-Jacobi coordinates are introduced to strainghten the associated flow, from which the algebro-geometric solutions of the (2+1)-dimensional integrable equation are constructed by means of the Riemann theta functions.

Key words: Algebro-geometric solution, Abel-Jacobi coordinates, Riemann θ function

中图分类号: 

  • O175.2