数学物理学报 ›› 2015, Vol. 35 ›› Issue (3): 478-486.

• 论文 • 上一篇    下一篇

2n维空间中的广义自对偶Yang-Mills方程的达布变换

沈守枫1, 于水猛2, 李春霞3, 金永阳1   

  1. 1. 浙江工业大学应用数学系 杭州 310023;
    2. 江南大学理学院 江苏 无锡 214122;
    3. 首都师范大学数学科学学院 北京 100048
  • 收稿日期:2014-04-11 修回日期:2014-10-28 出版日期:2015-06-25 发布日期:2015-06-25
  • 作者简介:沈守枫, mathssf@zjut.edu.cn
  • 基金资助:

    国家自然科学基金(11371323, 11271266)资助

Darboux Transformation for A Generalized Self-Dual Yang-Mills Equation in 2n Dimensions

Shen Shoufeng1, Yu Shuimeng2, Li Chunxia3, Jin Yongyang1   

  1. 1. Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023;
    2. School of Sciences, Jiangnan University, Jiangsu Wuxi 214122;
    3. School of Mathematical Sciences, Capital Normal University, Beijing 100048
  • Received:2014-04-11 Revised:2014-10-28 Online:2015-06-25 Published:2015-06-25

摘要:

从带负幂次谱参数的谱问题出发,构造了一类广义自对偶Yang-Mills方程. 这类方程包括若干著名的Lax可积方程, 如Takasaki情形、Belavin-Zakharov情形、Ablowitz-Chakravarty-Takhtajan情形和Ma情形. 进而建立了这类方程的达布变换的精确表达式.

关键词: 达布变换, 自对偶Yang-Mills方程, Lax可积, 谱问题

Abstract:

A generalized self-dual Yang-Mills equation with negative powers of the spectral parameter is proposed by a set of spectral problems. It contains some well-known Lax integrable equations such the Takasaki case, the Belavin-Zakharov case, the Ablowitz-Chakravarty-Takhtajan case and the Ma case. The explicit formulation of Darboux transformation is established for this equation.

Key words: Darboux transformation, Self-dual Yang-Mills equation, Lax integrable, Spectral problem

中图分类号: 

  • O29