数学物理学报 ›› 2015, Vol. 35 ›› Issue (2): 245-255.

• 论文 • 上一篇    下一篇

右半平面无限级随机Dirichlet级数值的分布

王志刚1, 田范基2   

  1. 1. 海南大学数学系 海口 570228;
    2. 湖北大学数学与统计学学院 武汉 430062
  • 收稿日期:2014-03-28 修回日期:2014-10-20 出版日期:2015-04-25 发布日期:2015-04-25
  • 作者简介:王志刚,E-mail:wzhigang@hainu.edu.cn;田范基,E-mail:tianfj1837@sina.com
  • 基金资助:

    国家自然科学基金(11261015)和海南省自然科学基金(20151002)资助

The Distribution of Values of the Infinite Order Random Dirichlet Series on the Right Half-Plane

Wang Zhigang1, Tian Fanji2   

  1. 1. Department of Mathematics, Hainan University, Haikou 570228;
    2. Faculty of Mathematics and Statistics, Hubei University, Wuhan 430062
  • Received:2014-03-28 Revised:2014-10-20 Online:2015-04-25 Published:2015-04-25

摘要:

该文主要研究了右半平面无限级随机 Dirichlet 级数值的分布. 首先, 在较宽的系数条件下证明了右半平面随机Dirichlet 级数增长性和值的分布定理. 其次, 研究了系数的模为两两NQD 列的随机Dirichlet 级数的性质, 得到与独立随机序列类似的结果. 在一定的条件下, 右半平面上随机级数 Xne-λns 与级数σne-λns a.s. 有相同的收敛横坐标、增长级和型函数.

关键词: 随机Dirichlet 级数, 增长性, 值的分布, 两两NQD 序列, 型函数

Abstract:

The emphasis in this paper is mainly on the distribution of values of the infinite order random Dirichlet series on the right half-plane. Firstly, the theorem of the growth and the distribution of value of the Dirichlet series on the right half-plane are proved under some weak conditions of the coefficient. Secondly, the random Dirichlet series the norms of whose coefficients are pairwise NQD sequences are investigated and some better results similar to the case of independent random sequences are obtained. Under some conditions, the random series Xne-λns and the series σne-λns a.s. have the same abscissa of convergence, the order of growth, the type function on the right half-plane.

Key words: Random Dirichlet series, Growth, Distribution of value, Pairwise NQD sequence, Type function

中图分类号: 

  • O211.5