[1] 韩茂安. 动力系统的周期解和分支理论. 北京:科学出版社, 2002
[2] Chen L, Wang M. On relative locations and the number of limit cycles for quadratic systems.
Acta Math Sinica, 1979, {\bf 22}: 751--758
[3] Han M. Cyclicity of planar homoclinic loops and quadratic integrable systems.
Sci China (Ser A), 1997, {\bf 40}(12): 1247--1258
[4] Han M, Chen J. On the number of limit cycles in
double homoclinic bifurcations.
Sci China (Ser A), 2000, {\bf 43}(9): 914--928
[5] Han M, Hu S, Liu X. On the stability of double homoclinic and heteroclinic cycles. Nonlinear Analysis, 2003, 53: 701--713
[6] Han M, Shang D, Wang Z, Yu P. Bifurcation of limit cycles in a fourth-order near-Hamiltonian system. International Journal of Bifurcation and Chaos, 2007, 17(11): 4117--4144
[7] Ilyashenko Yu. Finiteness Theorem for Limit Cycles.Providence, RI: American Mathematical Society, 1991
[8] Li C Z, Liu C J, Yang J Z. A cubic system with thirteen limit cycles. J Diff Eqs, 2009, 246: 3609--3619
[9] Li J. Hilbert's 16th problem and bifurcations of planar polynomial vector fields. Int J Bifurcation and Chaos,2003, 13(1): 47--106
[10] Liang F, Han M, Zhang X. Bifurcation of limit cycles from generalized homoclinic loops in planar piecewise smooth systems.
Journal of Differential Equations, 2013, 255(11): 4403--4436
[11] Liu Y, Huang W. A cubic system with twelve small amplitude limit cycles. Bull Sci Math, 2005, 129: 83--98
[12] Shang D, Zhang T. Bifurcations of a cubic system perturbed by degree five. Acta Mathematica Scientia, 2009, 29B(1): 11--24
[13] Shi S. Aconcrete example of a quadratic system of the existence of four limit cycles for plane quadratic systems. Sci Sinica A, 1980, 23: 153--158
[14] Smale S. Mathematical problems for the next century. The Math Intell, 1998, 20(2): 7--15
[15] Xu W, Han M. On the number of limit cycles of a $Z_4$-equivariant quintic polynomial system. 2010, 216: 3022--3034
[16] Zhang T, Zang H, Han M.Bifurcations of limit cycles in a cubic system. Chaos, Solitons and Fractals, 2003, 20(3): 629--638
[17] Zang H, Chen W, Zhang T. Perturbation from a cubic Hamiltonian with three eight-loops. Chaos, Solitons and Fractals, 2004, 22: 61--74 |