[1] Zeng Xianzhong. Non-constant positive steady states of a prey-predator system with cross-diffusions. J Math Anal Appl, 2007, 332: 989--1009
[2] Lou Yuan, Ni Weiming. Diffusion vs cross-diffusion: an elliptic approach. J of Differential Equations, 1999, 154: 157--190
[3] Lou Yuan, Ni Weiming. Diffusion, self-diffusion and cross-diffusion. J of Differential Equations, 1996, 131: 79--131
[4] 傅一平, 周笠. 一类交叉扩散系统的定态解的分歧分析及稳定性. 数学物理学报,1998, 18(4): 384--388
[5] Chen Xinfu, Qi Yuanwei, Wang Mingxin. A strongly coupled predator-prey system with non-monotonic functional response. Nonlinear Analysis, 2001, 67: 1966--1979
[6] Dubey B, Das B, Hussain J. A predator-prey interaction model with self and cross-diffusion. Ecological Modelling, 2001, 141: 67--76
[7] Kuto K. Stability of steady-state solutions to a prey-predator system with cross-diffusion. J of Differential Equations, 2004, 197: 293--314
[8] Wang Mingxin. Stationary patterns caused by cross-diffusion for a three-species prey-predator model. Computers and Mathematics with Applications, 2006, 52: 707--720
[9] Pao C V. Strongly coupled elliptic systems and applications to Lotka-Volterra models with cross-diffusion. Nonlinear Analysis, 2005, 60: 1197--1217
[10] Kim KwangIk, Lin Zhigui. Coexistence of three species in a strongly coupled elliptic system. Nonlinear Analysis, 2003, 55: 313--333
[11] Ko W, Ryu K. On a predator-prey system with cross diffusion representing the tendency of predators in the presence of prey species. J Math Anal Appl, 2008, 341: 1133--1142
[12] 胡广平, 李小玲. 带有交错扩散的Leslie-Gower型三种群系统的稳态模式. 数学物理学报, 2013, 33A(1): 16--27
[13] Farkas M. Two ways of modeling cross-diffusion. Nonlinear Anal, TMA, 1997, 30: 1225--1233 |