数学物理学报 ›› 2014, Vol. 34 ›› Issue (6): 1337-1347.

• 论文 •    下一篇

复差分-微分方程组的解的增长级

王钥1|张庆彩1|杨明华2   

  1. 1.中国人民大学 |信息学院 北京 |100872;2.中山大学  |数学系 广州 |510275
  • 收稿日期:2014-01-02 修回日期:2014-05-01 出版日期:2014-12-25 发布日期:2014-12-25
  • 基金资助:

    中国人民大学科学研究基金(中央高校基本科研业务费专项资金资助)项目(14XNH116)资助.

The Growth of Solutions of Systems of Complex Difference-Differential Equations

 WANG Yue1, ZHANG Qiang-Cai1, YANG Ming-Hua2   

  1. 2.School of Information, Renmin University of China, Beijing 100872;2.Zhongshan University, Guangzhou 510275
  • Received:2014-01-02 Revised:2014-05-01 Online:2014-12-25 Published:2014-12-25
  • Supported by:

    中国人民大学科学研究基金(中央高校基本科研业务费专项资金资助)项目(14XNH116)资助.

摘要:

利用亚纯函数的Nevanlinna值分布理论, 研究了两类高阶复差分-微分方程组的解的增长级问题, 推广和改进了一些作者的结论.  例子表明该文的结论是精确的.

关键词: 值分布理论, 增长级, 复差分-微分方程组

Abstract:

Using Nevanlinna theory of the value distribution of meromorphic functions, we investigate the problem of the growth of solutions of two types of complex difference-differential equations, and obtain two results. Improvements and extensions
of some results in references are presented. Examples show that our results are precise.

Key words: Value distribution, Growth, Systems of complex difference-differential equations

中图分类号: 

  • 30D35