[1] Noor M A, Noor K I. Sensitivity analysis of quasi variational inclusions. J Math Anal Appl, 1999, 236: 290--299
[2] Chang S S. Set-valued variational inclusions in Banach spaces. J Math Anal Appl, 2000, 248: 438--454
[3] Chang S S. Existence and approximation of solutions of set-valued variational inclusions in Banach spaces. Nonlinear Anal TMA, 2001, 47: 583--594
[4] Demyanov V F, Stavroulakis G E, Polyakova L N, Panagiotopoulos P D. Quasidifferentiability and Nonsmooth Modeling in Mechanics. Engineering and Economics. Dordrecht: Kluwer Academic, 1996
[5] Cianciaruso F, Colao V, Muglia L, Xu H K. On a implicit hierarchical fixed point approach to variational inequalities.
Bull Austral Math Soc, 2009, 80: 117--124
[6] Cianciaruso F, Marino G, Muglia L, Yao Y. On a two-step algorithm for hierarchical fixed point problems and variational inequalities. J Inequal Appl, 2009, Article ID208692
[7] Yao Y H, Liou Y C. An implicit extra-gradient method for hierarchical variational inequalities. Fixed Point Theory Appl,
2011, 2011: Article ID 697248 , doi: 10.1155/2011/697248
[8] Moudafi A. Krasnoselski-Mann iteration for hierarchical fixed point problems. Inverse Problems, 2007, 23: 1635--1640
[9] Yao Y, Liou Y C. Weak and strong convergence of Krasnoselski-Mann iteration for hierarchical fixed point problems.
Inverse Problems, 2008, 24: 015015
[10] Xu H K. A variable Krasnoselski-Mann algorithm and the miltiple-set split feasibility problem. Inverse Problems, 2006, 22: 2021--2034
[11] Xu H K. Viscosity methods for hierarchical fixed point approach to variational inequalities. Taiwanese J Math, 2010, 14(2): 463--478
[12] Marino G, Muglia L, Yao Y. Viscosity methods for common solutions of equilibrium and variational inequality problems via multi-step iterative algorithms and common fixed points. Nonlinear Anal, 2012, 75(4): 1787--1798
[13] Moudafi A. Viscosity approximation methods for fixed-points problems. J Math Anal Appl, 2000, 241(1): 46--55
[14] Colao V, Marino G, Muglia L. Viscosity methods for common solutions for equilibrium and hierarchical fixed point problems. Optimization, 2011, 60(5): 553--573
[15] Yao Y, Chen R, Liou Y C. A unified implicit algorithm for solving the triple-hierarchical constrained optimization problem. Math Comput Modelling, 2012, 55(3/4): 1506--1515
[16] Chang S S, Lee H W J, Chan C K. Algorithms of common solutions for quasi variational inclusion and fixed point problems. Appl Math Mech, 2008, 29: 1--11
[17] Lu X, Xu H K, Yin X. Hybrid methods for a class of monotone variational inequalities. Nonlinear Anal, 2009, 71: 1032--1041
[18] Osilike M O, Aniagbosor S C, Akuchu B G. Fixed points of asymptotically demicontractive mappings in arbitrary Banach spaces. Pan Amer Math J, 2002, 12: 77--88
[19] Chang S S, Cho Y J, Kim J K. Hierarchical variational nclusion problems in Hilbert spaces with applications. J Nonlinear Convex Anal, 2012, 13: 503--513
[20] Goebel K, Kirk W A. Topics in Metric Fixed Point Theory. New York: Cambridge University Press, 1990
[21] Dan Pascali. Nonlinear Mappings of Monotone Type. Amsterdam, the Netherlands: Sijthoff and Noordhoff International Publishers, 1978
[22] Chang S S, Wang X R, Lee H W J, Chan C K. Viscosity method for hierarchical fixed point and variational
inequalities with applications. Appl Math Mech, 2011, 32(2): 241--250
[23] Lions P L. Two remarks on the convergence of convex functions and monotone operators. Nonlinear Anal, 1918, 2: 553--562
[24] Deng W Q, Bai P. An implicit iteration process for common fixed points of two infinite families of asymptotically nonexpansive mappings in Banach spaces. J Appl Math 2013, Art. ID 602582, 6 pp |