数学物理学报 ›› 2014, Vol. 34 ›› Issue (5): 1228-1235.

• 论文 • 上一篇    下一篇

带凹凸项的分数阶Laplace方程解的存在性

李本鸟|陈晓莉   

  1. 江西师范大学 数学与信息科学学院 南昌 330022
  • 收稿日期:2013-03-22 修回日期:2014-06-13 出版日期:2014-10-25 发布日期:2014-10-25
  • 基金资助:

    国家自然基金(11271170)、江西省赣鄱、江西省自然基金(2012BAB201008)和 江西师范大学博士启动基金资助

Existence of Solutions for Fractional Laplace Equation with Concave-Convex Term

 LI Ben-Niao, CHEN Xiao-Li   

  1. Department of Mathematics, Jiangxi Normal University, Nanchang Jiangxi 330022
  • Received:2013-03-22 Revised:2014-06-13 Online:2014-10-25 Published:2014-10-25
  • Supported by:

    国家自然基金(11271170)、江西省赣鄱、江西省自然基金(2012BAB201008)和 江西师范大学博士启动基金资助

摘要:

该文研究带凹凸项的分数阶Laplace方程
{(-Δ)s u=λa(x)|u|q-2u+b(x)|u|p-2u    在Ω上,
u=0                                                      在Rn\Ω上.
解的存在性, 其中Ω是Rn中的有界区域, s∈ (0,1), q∈(1,2), p∈(2,2s*], 2s*=2n/n-2s, n>2sλ>0, a(x)和b(x)都是有界连续函数, 且b(x) 非负、a(x)变号. 应用山路引理, 证明了方程在临界和次临界情形下, 至少有一个非负非平凡解; 而且, 利用喷泉定理, 证明了方程在次临界情形下有无穷多个解.

关键词: 凹凸项, 分数阶Laplace, 临界指数, 无穷多解

Abstract:

In this paper, we investigate the existence of solutions for  the following equation with the fractional Laplacian (-Δ)s and
concave-convex nonlinearities,
{(-Δ)s u=λa(x)|u|q-2u+b(x)|u|p-2u    inΩ,
u=0                                                      inRn\Ω.
where s∈ (0,1), q∈(1,2), p∈(2,2s*] and 2s*=2n/n-2s, n>2sλ>0, Ω is a bounded domain of Rn, a(x) and b(x) are bounded continuous with b(x)≥0 and a(x) changes signs. We not only prove the existence of nontrivial nonnegative solutions by the Mountain Pass Lemma when p is subcritical and critical, but also, by using Fountain Theorem, we obtain infinitely many solutions for the subcritical case.

Key words: Concave-Convex nonlinearity, Fractional Laplacian, Critical exponent, Infinitely many solutions

中图分类号: 

  • 35A15