[1] 王彦飞. 反演问题的计算方法及其应用. 北京: 高等教育出版社, 2007
[2] Li G S. Data compatibility and conditional stability for an inverse source problem in the heat equation. Applied Mathematics and Computation, 2006, 173: 566--581
[3] Yi Z, Murio D A. Source term identification in 1-D IHCP. Computers and Mathematics with Applications, 2004, 47: 1921--1933
[4] Farcas A, Lesnic D. The boundary-element method for the determination of a heat source dependent on one
variable. Journal of Engineering Mathematics, 2006, 54: 375--388
[5] Johansson T, Lesnic D. Determination of a spacewise dependent heat source. Journal of Computational and
Applied Mathematics, 2007, 209: 66--80
[6] Yan L, Fu C L, Yang F L. The method of fundamental solutions for the inverse heat source problem. Engineering Analysis with Boundary Elements, 2008, 32: 216--222
[7] Cheng H W, Huang J F, Leiterman T J. An adaptive fast solver for the modified Helmholtz equation in two dimensions. Journal of Computational Physics, 2006, 211: 665--674
[8] 杨帆, 傅初黎, 李晓晓. 修正的Helmholtz方程的未知源识别反问题. 数学物理学报, 2012, 32A: 557--565
[9] Yang F, Guo H Z, Li X X. The simplified tikhonov regularization method for identifying the unknown source for the modified helmholtz equation. Mathematical Problem in Engineer, 2011, 2011: 1--14
[10] Eld\'{e}n L, Berntsson F, Regi\`{n}ska T. Wavelet and Fourier methods for solving the sideways heat equation. SIAM Journal on Scientific Computing, 2000, 21: 2187--2205
[11] Xiong X T, Fu C L, Li H F. Fourier regularization method of a sideways heat equation for determining surface heat flux. Journal of Mathematical Analysis and Applications, 2006, 317: 331--348
[12] Fu C L, Feng X L, Qian Z. The Fourier regularization for solving the Cauchy problem for the Helmholtz equation.
Applied Numerical Mathematics, 2009, 59: 2625--2640
[13] Qian Z, Fu C L, Xiong X T, Wei T. Fourier truncation method for high order numerical derivatives. Applied Mathematics and Computation, 2006, 181: 940--948
[14] Regi\'{n}ska T, Regi\'{n}ski K. Approximate solution of a Cauchy problem for the Helmholtz equation. Inverse Problems, 2006, 22: 975--989
[15] Dou F F, Fu C L, Yang F L. Optimal error bound and Fourier regularization for identifying an unknown source in the hear equation. Journal of Computational and Applied Mathematics, 2009, 230: 728--737
[16] Yang F, Fu C L. Two regularization methods to identify time-dependent heat source through an internal measurement of temperature. Mathematical and Computer Modelling, 2011, 53: 793--804
[17] Fu C L, Li H F, Qian Z, Xiong X T. Fourier regularization method for solving a Cauchy problem for the Laplace equation. Inverse Problems in Science and Engineering, 2008, 16: 159--169
[18] Fu C L, Xiong X T, Qian Z. Fourier regularization for a backward heat equation. Journal of Mathematical Analysis and Applications, 2007, 331: 472--480 |