[1] Beem J K, Ehrlich P E, Easley K L. Global Lorentzian Geometry. New York: Marcel Dekker, 1996
[2] Chang D C, Markina I, Vasiliev A. Sub-Lorentzian geometry on anti-de sitter space. J Math Pures Appl, 2008, 90(1): 82--110
[3] Grochowski M. Geodesics in the sub-Lorentzian geometry. Bull Polish Acad Sci, 2002, 50(2): 161--178
[4] Grochowski M. Normal forms of germs of Contact sub-Lorentzian structures on R3, Differentiability of the sub-Lorentzian distance function. J Dynam Control Sys, 2003, 9(4): 531--547
[5] Grochowski M. Reachable sets for the Heisenberg sub-Lorentzian structure on R3, An estimatefor the distance function. J Dynam Control Sys, 2006, 12(2): 145--160
[6] Huang Tiren, Yang Xiaoping. Geodesics in the Heisenberg group Hn with a Lorentzian metric. J Dynam Control Sys, 2012, 12(4): 479--498
[7] Monroy-P\'{e}rez F, Anzaldo-Meneses A. Optimal control on the Heisenberg group. J Dynam Control Sys, 1996, 5(4): 473--499
[8] Korolko A, Markina I. Non-Holonomic Lorentzian geometry on some H-type groups. (preprint) |