[1] Ambrosetti A, Badiale M. Homoclinics: Poincare-Melnikov type results via a variational approach. Ann Inst H Poincare Analyse Non Lineaire, 1998, 15: 233--252
[2] Ambrosetti A, Badiale M. Variational perturbative methods and bifurcation of bound states from the essential spectrum.
Proc Royal Soc Edinburgh, 1998, 128A: 1131--1161
[3] Ambrosetti A, Garcia Azorero J, Peral I. Remarks on a class of semilinear elliptic equations on RN, via perturbation methods. Advanced Nonlinear Studies, 2001, 1(1): 1--13
[4] Aubin T. Probl\`{e}mes isop\'{e}rim\'{e}triques et espaces de Sobolev. J Diff Geom, 1976, 11: 573--598
[5] Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent. Comm Pure Appl Math, 1983, 36: 437--477
[6] Lions P L. The concentration-compactness principle in the calculus of variations. The limit case Part1; and Part2, Rev Mathematical Iberoamericana, 1985, 1(1): 541--597; 1985, 1(2): 45--121
[7] Flucher M, Wei J. Asymptotic shape and location of small cores in elliptic free-boundary problems. Math Z, 1998, 228: 683--703
[8]}Musso M, Pistoia A. Multispike solutions for a nonlinear elliptic problem involving the critical Sobolev exponent.
Indiana Univ Math J, 2002, 51(3): 541--579
[9] Wei Juncheng, Yan Shusen. New solutions for nonlinear Schrodinger equations with critical nonlinearity. JDE, 2007, 237: 446--472
[10] 付永强, 张夏. RN上一类P(x)-Lapalacian 方程的无穷多解问题. 数学物理学报, 2010, 30A(2): 465--471
[11] Manuel Del Pino, Patricio Felmer. Semi-classical states of nonlinear Schrodinger equations: a variational reduction method. Mathematische Annalen, 2002, 324: 1--32
[12] Massimo Grossi. On the number of single-peak solutions of the nonlinear Schrodinger equation. Ann I Poincare, 2002, 19(3): 261--280
[13] 马汝念, 朱熹平. 临界增长的半线性椭圆方程的多解性. 数学物理学报, 1988, 3: 327--332
[14] 李周欣, 沈尧天. 自然增长条件下含Hardy位势的椭圆型方程解的存在性. 数学物理学报, 2011, 31A(6): 1470--1478 |