数学物理学报 ›› 2014, Vol. 34 ›› Issue (3): 755-759.

• 论文 • 上一篇    下一篇

Banach空间中关于增生算子的强收敛迭代序列

崔欢欢   

  1. 洛阳师范学院 数学科学学院 河南 洛阳 471022
  • 收稿日期:2012-10-08 修回日期:2014-03-06 出版日期:2014-06-25 发布日期:2014-06-25
  • 基金资助:

    国家自然科学基金(11301253)资助

An Iterative Sequence with Norm Convergence for Accretive Operators in Banach Spaces

 CUI Huan-Huan   

  1. Department of Mathematics, Luoyang Normal University, Henan Luoyang 471022
  • Received:2012-10-08 Revised:2014-03-06 Online:2014-06-25 Published:2014-06-25
  • Supported by:

    国家自然科学基金(11301253)资助

摘要:

主要研究求解增生算子零点问题的一类算法: xn+1=αnu+(1-αn)((1-λ)xn+λJrnxn), 其u是固定向量, λ∈(0,1), {rn}和{αn}是实数列,  Jrn表示增生算子A的预解式. 其中(rn)收敛是保证算法收敛的一个充分条件, 该文主要证明了此条件可减弱为limn|1-rn+1/rn|=0.

关键词: 增生算子, 预解式, 弱连续对偶映像

Abstract:

This paper deals with the problem: find x so that 0∈Ax, where A is an accretive operator. One algorithm solving this problem has the following scheme: xn+1nu+(1-αn)((1-λ)xn+λJrnxn), where u is a fixed element, λ(0,1),  {rn} and αn are real sequences, and Jrn denotes the resolvent of  A. The algorithm is known to converge provided that (rn) is a convergent sequence. In this paper we show that such a condition can be relaxed as limn→∞|11-rn+1/rn|=0.

Key words: Accretive operator, Resolvent, Weakly continuous duality map

中图分类号: 

  • 47H06