数学物理学报 ›› 2014, Vol. 34 ›› Issue (3): 655-668.

• 论文 • 上一篇    下一篇

一类非线性分数阶多点边值问题的可解性

郝晓红|程智龙*|周宗福   

  1. 安徽工程大学机电学院基础教学部 安徽 芜湖 |241000;安徽大学数学科学学院 合肥 |230601
  • 收稿日期:2012-10-17 修回日期:2013-12-29 出版日期:2014-06-25 发布日期:2014-06-25
  • 基金资助:

    国家自然科学基金(11071001)和安徽省自然科学基金(1208085MA13)资助

Solvability of Solutions for a Class of Nonlinear Fractional Multi-Point Boundary Value Problems

 HAO Xiao-Hong, CHENG Zhi-Long*|ZHOU Zong-Fu   

  1. Basic Teaching Department, College of Mechanical &|Electrical |Engineering, Anhui Polytechnic University, Anhui Wuhu 241000;School of Mathematical Sciences,  |Anhui University, Hefei 230601
  • Received:2012-10-17 Revised:2013-12-29 Online:2014-06-25 Published:2014-06-25
  • Supported by:

    国家自然科学基金(11071001)和安徽省自然科学基金(1208085MA13)资助

摘要:

研究下面一类非线性分数阶微分方程多点边值问题
Dα0+u(t) = f(t, u(t), Dα-10+u(t), Dα-20+u(t), Dα-30+u(t)), t ∈(0,1),  3<α≤4, u(0) = 0, Dα-10+u(0)=∑mi=1αiDα-10+ui),
Dα-20+u(1)=∑j=1nβjDα-20+uj), Dα-30+u(1)-Dα-30+u(0)=Dα-20+u(1) 1/2Dα-10+u(0).
通过应用Mawhin重合度理论得到解的存在性结果. 此结论拓展了在分数阶多点边值问题这个领域的以前的结果.

关键词: 分数阶微分方程, 边值问题, 重合度理论, 可解性

Abstract:

This paper is concerned with the following nonlinear fractional differential equations multi-point boundary value problem
Dα0+u(t) = f(t, u(t), Dα-10+u(t), Dα-20+u(t), Dα-30+u(t)), t ∈(0,1),  

u(0) = 0, Dα-10+u(0)=∑mi=1αiDα-10+ui),
Dα-20+u(1)=∑j=1nβjDα-20+uj), Dα-30+u(1)-Dα-30+u(0)=Dα-20+u(1) 1/2Dα-10+u(0).
By applying Mawhin coincidence degree theory, we obtain the existence of the solutions for the problem. The results expand the previous ones in the field.

Key words: Fractional differential equation, Boundary value problem,  Coincidence degree theory, Solvability of the solutions

中图分类号: 

  • 34B10