[1] Auslander M, Reiten I. Applications of contravariantly finite subcategories. Adv Math, 1991, 86: 111--152
[2] Bass H. Finitistic dimension and a homological generalization of semiprimary rings. Trans Amer Math Soc, 1960, 95: 466--488
[3] Green E, Kirkman E, Kuzmanovich J. Finitistic dimension of finite dimensional monomial algebras. J Algebra, 1991, 136: 31--51
[4] Green E, Zimmermann-Huisgen B. Finitistic dimension of Artinian rings with vanishing radical cube. Math Z, 1991, 206: 505--526
[5] Hubery A W. Representation of Quivers Respecting a Quiver Automorphism and a Theorem of Kac. Ph.D. Dissertation, Leeds: University of Leeds, 2002
[6] Igusa K, Todorov G. On the finitistic global dimension conjecture for artin algebras, in: Representations of Algebras and Related Topics//Fields Inst Commun, Vol 45. Providence, RI: Amer Math Soc, 2005: 201--204
[7] Li F, Zhang M. Invariant properties of representations under cleft extensions. Science in China, 2007, 50(1): 121--131
[8] Liu Z, Zhao Z. Almost excellent extensions and homological dimensions. J Math Res Exp, 1999, 19(3): 557--562
[9] Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS Lect Math, Vol 82. Providence, RI: Amer Math Soc, 1993
[10] Wang Y. A note on the finitistic dimension conjectur. Comm Algebra, 1994, 22(7): 2525--2528
[11] Xi C. Representation dimension and quasi-hereditary algebras. Adv Math, 2002, 168: 193--212
[12] Xi C. On the finitistic dimension conjecture I: Related to representation-finite algebras. J Pure Appl Algebra, 2004, 193: 287--305
[13] Xi C. On the finitistic dimension conjecture II: Related to finite global dimension. Adv Math, 2006, 201: 116--142
[14] Xi C. On the finitisic dimension conjecture III: Related to the pair $eAe\subseteq A. J Algebra, 2008, 319(9):
3666--3688
[15] Zhang M, Li F. Representations of skew group algebras induced from isomorphically invariant modules over
path algebras. J Algebra, 2009, 321: 567--581
[16] Zhang M, Lin Z. The dual quiver of Q with respect to an automorphism group G of Q. (submitted)
[17] Zhang A, Zhang S. On the finitistic dimension conjecture of Artin algebras. J Algebra, 2008, 320: 253--258 |