[1] Takahashi S, Takahashi W. Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space. Nonlinear Anal TMA, 2008, 69: 1025--1033
[2] Chang S S, Lee H W, Chan C K. A new hybrid method for solving a generalized equilibrium problem, solving a variational inequality problem and obtaining common fixed points in Banach space whith applications. Nonlinear Anal TMA, 2010, 73: 2260--2270
[3] Ceng L C, Yao J C. A hybrid iterative scheme for mixed equilibrium problems and fixed point problems. J Comput Appl Math, 2008, 214: 186--201
[4] Tang J F, Chang S S. Strong convergence theorem for a generalized mixed equilibrium problem and fixed point problem for a familyof infinitely nonexpansive mappings in Hilbert spaces. Pan Amer Math Jour, 2009, 19(2): 75--86
[5] Ofoedu E U, Malonza D M. Hybrid approximation of solutions of nonlinear operator equations and application to equation of Hammerstein-type. Appl Math Comput, 2010, 10.1016/j.amc.2010.12.073
[6] Zhang S S. The generalized mixed equilibrium problem in Banach space. Appl Math Mech, 2009, 30: 1105--1112
[7] Cioranescu I. Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Dordrecht: Kluwer Academic,1990
[8] Alber Y I. Metric and Generalized Projection Operators in Banach Spaces: properties and applications//Kartsatos A.
Theory and Applications of Nonlinear Operators of Monotone and Accretive Type. New York: Marcel Dekker, 1996: 15--50
[9] Matsyshita S, Takahashi W. A Strong convergence theorem for relatively nonexpansive mappings in Banach spaces.
J Approx theory, 2005, 134: 257--266
[10] Su Y F, Xu H K, Zhang H K. Strong convergence theorems for two countable families of weak relatively nonexpansive mappings and applications. Nonlinear Anal TMA, 2010, 73: 3890--3906
[11] Nilsrakoo W, Saejung S. Strong convergence to common fixed points of countable relatively quasi-nonexp- ansive mappings. Fixed Point Theory Appl, 2008, doi: 10.1155/2008/312454
[12] Zhou H Y, Gao G, Tan B. Convergence theorems of a modified hybrid algorithm for a family of quasi Φ-asymptotically nonexpansive mappings. J Appl Math Comput, 2009, 17 March, doi: 10.1007/s12190-009-0263-4
[13] Goebal K, Kirk W A. A fixed point theorem for asymptotically nonexpansive mappings. Proceedings American Mathematical Society, 1972, 35: 171--174
[14] Bruck R E, Kuczumow Y and Reich S. Convergence of iterates of asymptotically non-expansive mappings in Banach spaces with the uniform Opial property. Colloq Math, 1993, 65(2): 169--179
[15] Martinet B. Regularisation d'inequations variationnelles par approximations successives. Rev Fr Autom Inform Rech Oper, 1970, 4: 154--159
[16] Rockafellar R T. Monotone operators and the proximal point algorithm. SIAM J Control Optim, 1976, 14: 877--898
[17] Ceng L C, Lai T C, Yao J C. Approximate proximal algorithm for generalized variational inequalities with paramonotonicity and pseudomonotonicity. Comut Math Appl, 2008, 55: 1262--1269
[18] Ceng L C, Yao J C. Generalized implicit hybrid projection-proximal point algrithm for maximal monotone operators in Hilbert space. Taiwan J Math, 2008, 12(3): 753--766
[19] Zeng L C, Yao J C. An inexact proximal-type algorithm in Banach spaces. J Optim Theory Appl, 2007, 135(1): 145--161
[20] Ceng L C, Yao J C. Approximate proximal algorithm for generalized variational inequalities with pseudomonotone multifunctions. J Comut Appl Math, 2008, 213(2): 423--438
[21] Kamimura S, Takahashi W. Strong convergence of a proximal-type algorithm in a Banach space. SIAM J Optim, 2002, 13: 938--945
[22] Solodov M V, Svaiter B F. Forcing strong convergence of proximal point iterations in a Hilbert space. Math. Program, 2000, 87: 189--202
[23] Takahashi W, Zembayashi K. Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces. Nonlinear Anal TMA, 2009, 70(1): 45--57
[24] Qin X L, Su Y F. Strong convergence theorems for relatively nonexpansive mappings in a Banach space. Nonlinear Anal TMA, 2007, 67: 1958--1965
[25] Ceng Lu Chuan, Sy Ming Guu, Hu H Y, et al. Hybrid shrinking projection method for a generalized equilibrium problem, a maximal monotone operator and a countable family of relatively nonexpansive mappings. Comput Math Appl, 2011, 61: 2468--2479
[26] Ceng L C, Petrusel A, Wu S Y. On hybrid proximal-type algrithms in Banach space. Taiwan J Math, 2008, 12(8): 2009--2029
[27] Chang S S, Jong Kyu Kim, Wang X R. Modified block iterative algorithm for solving convex feasibility problems in Banach spaces. J Ineq Appl, 2010, {\bf 2010}: Article ID 869684, 14 pages, doi: 10.1155/2010/869684
[28] Blum E, Oettli W. From optimization and variational inequalities to equilibrium problems. The Math Student, 1994, 63: 123--145
[29] Rockafellar R T. On the maximality of sums of nonlinear monotone operators.Trans Amer Math Soc, 1970, 149: 75--88
[30] Kohsaka F, Takahashi W. Strong convergence of an iterative sequence for maximal monotone operators in a Banach spaces. Abstr Appl Anal, 2004, 3: 239--249 |