数学物理学报 ›› 2014, Vol. 34 ›› Issue (1): 27-38.

• 论文 • 上一篇    下一篇

一类A -调和方程的障碍问题的很弱解的全局正则性

周树清1,2*|胡振华3|彭冬云1   

  1. 1.湖南师范大学数学与计算机科学学院 长沙 410081; 
    2.高性能计算与随机信息处理省部共建教育部重点实验室 长沙 410081;
    3.湖南城市学院数学系 湖南益阳 413000
  • 收稿日期:2012-04-08 修回日期:2013-07-04 出版日期:2014-02-25 发布日期:2014-02-25
  • 通讯作者: 周树清,zhoushuqing87@163.com E-mail:zhoushuqing87@163.com
  • 基金资助:

    国家自然科学基金(11271120, 10971061)、湖南省自科基金(11JJ6005)、湖南省重点学科建设项目和湖南师范大学青优培养计划(080640)资助.

Global Regularity for Very Weak Solutions to Obstacle Promlems Corresponding to a Class of A-Harmonic Equations

 ZHOU Shu-Qing1,2*, HU Zhen-Hua3, PENG Dong-Yun1   

  1. 1.School of Mathematics and Computer Science of Hunan Normal University, Changsha 410081;
    2.Key Laboratory of High Performance Computing and Stochastic Information Processing, Changsha 410081;
    3.Department of Mathematics, Hunan City University, Hunan |Yiyang 413000
  • Received:2012-04-08 Revised:2013-07-04 Online:2014-02-25 Published:2014-02-25
  • Contact: ZHOU Shu-Qing,zhoushuqing87@163.com E-mail:zhoushuqing87@163.com
  • Supported by:

    国家自然科学基金(11271120, 10971061)、湖南省自科基金(11JJ6005)、湖南省重点学科建设项目和湖南师范大学青优培养计划(080640)资助.

摘要:

应用Hodge分解定理, 得到了非齐次A -调和方程

-div(A(x, Du(x)))=f(x, u(x))
对应的障碍问题很弱解的局部和全局的W1, q(Ω) -正则性, 其中,  A(x, Du(x)), f(x, u(x))满足文中所给的条件, 从而推广了相关文献中的有关结果. 该结果在优化控制问题中有着广泛的应用.

关键词: 非齐次A -调和方程, 障碍问题, 优化控制, Hodge分解, 全局W1, q(Ω) -正则性

Abstract:

Using Hodge decomposition theorem, the local and the global W1, q(Ω)-regularity results for very weak solutions to the obstacle problems associated with the following non-homogeneous A-harmonic equations

 -div(A(x, Du(x)))=f(x, u(x))
are obtained under certain conditions on A(x, Du(x)), f(x, u(x)) listed in the context. The results generalize the corresponding results in related literatures. The results can be widely applied to optimal control problems.

Key words: Non-homogeneous A-harmonic equations, Obstacle problems, Optimal control, Hodge decomposition, Global W1, q(Ω)-regularity

中图分类号: 

  • 35J60