[1] Bonnesen T. Les Probl\`{e}mes des Isop\`{e}rim\`{e}tres at des Is\`{e}piphanes. Paris: Gauthie-Villars, 1929
[2] Bonnesen T, Fenchel W. Theorie der konvexen K\"{o}eper. Berlin, New York: Springer-Verlag, 1974
[3] Bottema O. Elne obere Grenze f\"{u}r das isoperitrische Defizit ebener Kurven. Nederl Akad wetensch, Proc, 1933, A66: 442--446
[4] Pleijel A. On konvexa Kurvor. Nordisk Math Tidskr, 1955, 3: 57--64
[5] 周家足. 平面Bonnessn型不等式. 数学学报, 2007, 50(6): 1397--1402
[6] 周家足, 任德麟. 从积分几何的观点看几何不等式. 数学物理学报, 2010, 30A(5): 1322--1339
[7] Li M, Zhou J Z. An isoperimetyic deficit upper bound of the convex domain in a surface of constant curvature. Science in China: Mathematics, 2010, 53(8): 1941--1046
[8] 潘生亮. 切线极坐标的一个应用. 华东师范大学学报(自然科学版), 2003, 1: 13--16
[9] Martini H, Mustafaev Z. A new construction of curves of constant width. Computer Aided Geometric Design, 2008, 25(9): 751--755
[10] Lachand-Robert T, Qudet E. Bodies of constant width in arbitrary dimentional. Math Nachr, 2007, 280: 740--750
[11] Barbier E. Note le probl\`{e}me de l'aiguille et lejeu du joint couvert. J de Math Pures Appel, 1860, 5: 273--286
[12] Blaschke W. Konvexe Bereiche gegebener konstanter Breite und kleinsten Inhalts. Math Ann, 1915, 76: 504--513
[13] Lebesgue H. Sur le probl\`{e}me des isop\'{e}rim\`{e}tres et sur les domaines de largeur constante. Bull Soc Math, 1914, 7: 72--76
[14] Besicovich A. Minimum area of a set of constant width. Proc Symp Pure Math, 1963, 7: 13--14
[15] Fujiwara M, Kakeya S. On some problems of maxima and minima for the curve of constant breadth and the irresolvable curve of the equilateral triangle. Tohoku Math J, 1917, 11: 92--110
[16] Harrell E. A direct proof of a theorem of Blaschke and Lebesgue. J Geom Analysis, 2002, 12(1): 81--88
[17] Santal\'{o} L. Integral Geometry and Geometric Probability. Canada: Addison-Wesley Publishing Company, 1976
[18] Ren D L. Topics in Integral Geometry. Sigapore: World Scientific, 1994
[19] 徐文学, 周家足, 陈方维. 一类常宽“等腰梯形”. 中国科学(数学), 2011, 41(10): 855--860 |