[1] Kruglov V I, Peacock A C, Harvey J D. Exact solutions of the generalized nonlinear Schr\"{o}dinger equation with distributed coefficients. Phys Rev E, 2005, 71: 056619
[2] Wazwaz A M. The variational iteration method for rational solutions for KdV, K(2, 2), Burgers, and cubic Boussinesq equations. J Comput Math, 2007, 207: 18--23
[3] Qiao Z J. The Camassa-Holm hierarchy, n-dimensional integrable systems, and algebro-geometric solution on a symplectic submanifold. Commun Math Phys, 2003, 239: 309--341
[4] Hereman W. Symbolic computation of conservation laws of nonlinear partial differential equations in multi-dimensions. Int J Quantum Chem, 2005, 106: 278--299
[5] Lou S Y, Tong B, Hu H C, Tang X Y. Coupled KdV equations derived from two-layer fluids. J Phys A: Math Gen, 2006, f 39: 513--527
[6] Yomba E. A generalized auxiliary equation method and its application to nonlinear Klein-Gordon and generalized nonlinear Camassa-Holm equations. Phys Lett A, 2008, 372: 1048--1060
[7] Lou S Y, Ma H C. Finite symmetry transformation groups and exact solutions of Lax integrable systems. Chaos Soliton and Fractals, 2006, 30: 804--821
[8] Yan Z Y. Exact analytical solutions for the generalized non-integrable nonlinear Schr\"{o}dinger equation with varying coefficients. Phys Lett A, 2010, 374: 4838--4843
[9] Zhang Y F, Guo F K. Matrix Lie algebras and integrable couplings. Commun Theor Phys, 2006, 46: 812--818
[10] Zhang Y F. Lie algebras for constructing nonlinear integrable couplings. Commun Theor Phys, 2011: 805--812
[11] Ma W X, He J S, Qin Z Y. A supertrace identity and its applications to superintegrable systems. J Math Phys, 2008, 49: 033511
[12] Tao S X, Xia T C. Lie algebra and Lie super algebra for integrable couplings of C-KdV hierarchy. Chin Phys Lett,
2010, 27: 040202
[13] Tao S X, Xia T C. The super-classical-Boussinesq hierarchy and its super-Hamiltonian structure. Chin Phys B, 2010, 19: 070202
[14] Dong H H, Wang X Z. Lie algebras and Lie super algebra for the integrable couplings of NLS-MKdV hierarchy.
Commun Nonlinear Sci Numer Simulat, 2009, 14: 4071--4077
[15] 季杰, 虞静, 董亚娟. 超AKNS方程新的可积分解. 数学物理学报, 2012, 32A: 424--432
[16] He J S, Yu J, Cheng Y, Zhou R G. Binary nonlinearization of the super AKNS system. Mod Phys Lett B, 2008, 22: 275--288
[17] Yu J, He J S, Ma W X, Cheng Y. The Bargmann symmetry constraint and binary nonlinearization of the super Dirac systems. Chin Ann Math, 2010, 31B: 361--372
[18] Ge J Y, Xia T C. A new integrable couplings of classical-Boussinesq hierarchy with self-consistent sources. Commun Theor Phys, 2010, 54: 1--6
[19] Yu F J. A kind of integrable couplings of soliton equations hierarchy with self-consistent sources associated with sl(4). Phys Lett A, 2008, 372: 6613--6621
[20] Xia T C. Two new integrable couplings of the soliton hierarchies with self-consistent sources. Chin Phys B, 2010, 19: 100303
[21] Li L. Conservation laws and self-consistent sources for a super-CKdV equation hierarchy. Phys Lett A, 2011, 375: 1402--1406
[22] Wang H, Xia T C. Conservation laws for a super G-J hierarchy with self-consistent sources. Commun Nonlinear Sci Numer Simulat, 2012, 17: 566--572
[23] Miura R M, Gardner C S, Kruskal M D. Korteweg-de Vries equation and generalizations II: existence of conservation laws and constants of motion. Journal of Mathematical Physics, 1968, 9: 1204--1209
[24] Wadati M, Sanuki H, Konno K. Transformation and an infinite number of conservation laws. Progress of Theoretical Physics, 1975, 53: 419--436
[25] Ma W X. Integrable cuoplings of soliton equations by perturbations. Appl Anal, 2000, 7: 21--56
[26] Ma W X, Strampp W. An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems. Phys Lett A, 1994, 185: 277--286
[27] Zhu Z N. Lax pair, B\"{a}cklund transformation, solitary wave solution and finite conservation laws of the general
KP equation and MKP equation with variable coefficients. Phys Lett A, 1993, 180: 409--412
[28] Li Y S, Zhang L N. Super AKNS scheme and its infinite conserved currents. Nuovo Cimento A, 1986, 93: 175--183
[29] Li Y S, Zhang L N. A note on the super AKNS equations. J Phys A: Math Gen, 1988, 21: 1549--1552
[30] Tao S X. The Study of Lie Super Algebra and Nonlinear Evolution Equation Hierarchies[D]: Shanghai: Shanghai University, 2011
[31] Tu G Z. An extension of a theorem on gradients of conserved densities of integrable systems. Northeastern Math J, 1990, 6: 26--32 |