[1] Berestycki H, Lions P L. Nonlinear scalar field equations, (I). Arch Rat Mech Anal, 1983, 82: 313--376
[2] Strauss W A. Existence of solitary waves in higher dimensions. Comm Math Phys, 1997, 55: 149--162
[3] Lions P L. The concentration-compactness principle in the calculus of variations, the local compact case, part 2.
Ann I H P Anal Nonli, 1984, 1: 223--283
[4] Yang J F, Zhu X P. On the existence of nontrivial solution of a quasilinear elliptic boundary value problem for
unbounded domains, (I) positive mass case. Acta Math Sci, 1987, 7: 341--359
[5] Coti-Zelati V, Rabinowitz P. Homoclinic type solutions for a semilinear elliptic PDE on RN. Comm Pure Appl Math, 1992, 46: 1217--1269
[6] Ambrosetti A, Rabinowitz P. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14: 349--381
[7] Ding Y H, Lee C. Multiple solutions of SchrÖdinger equations with indefinite linear part and super or asymptotically linear terms. J Diff Eqs, 2006, 222: 137--163
[8] Ding Y H, Luan S X. Multiple solutions for a class of nonlinear Schr\"{o}dinger equations. J Diff Eq, 2004, 207: 423--457
[9] Bartsch T, Wang Z. Existence and multiplicity results for some superlinear elliptic problems on RN. Comm PDE, 1995, 20: 1725--1741
[10] Furtado M F, Maia L A, Silva E A B. On a double resonant problem in RN. Diff Int Equations, 2002, 11: 1335--1344
[11] Rabinowitz P H. On a class of nonlinear SchrÖdinger equations. Z Angew Math Phys, 1992, 43: 270--291
[12] Omana W, Willem M. Homoclinic orbits for a class of Hamiltonian systems. Diff Int Equations, 1992, 5: 1115--1120
[13] Costa D G. On a class of elliptic systems in RN. Electronic J Diff Eq, 1996, 9: 295--303
[14] Furtado M F, Maia L A, Silva E A B. Solutions for a resonant elliptic system with coupling in RN. Comm PDE, 2002, 27: 1515--1536
[15] Li G B, Zhou H S. Multiple solutions to p-Laplacian problems with asymptotic nonlinearity as up-1 at infinity. J London Math Soc, 2002, 65: 123--138
[16] Li G B, Zhou H S. The existence of a positive solution to asymptotically linear scalar field equations. Proc R Soc Edinb, 2000, 130A: 81--105
[17] Stuart C A, Zhou H S. Applying the mountain pass theorem to an asymptotically linear elliptic equation on RN. omm PDE, 1999, 24: 1731--1758
[18] Willem M. Minimax Theorems. Boston, Basel, Berlin: Birkhauser, 1996 |