[1] Nakane K, Shinohara T. Existence of periodic solutions for a free boundary problem of hyperbolic type. Journal of Hyperbolic differential Equations, 2008, 5(4): 785--806
[2] Imai H, Kikuchi K, Nakane K, et al. A numerical approach to the asymptotic behavior of solutions of a one-dimensional
free boundary problem of hyperbolic type. Japan J Indust Appl Math, 2001, 18(1): 43--58
[3] Zhao Weixia. Study on a free boundary value problem arising from peeling phenomenon (in Chinese). Acta
Mathematica Scientia (Series A), 2011, 31(6): 1461--1469
[4] Alt H W, Caffarelli L A. Existence and regularity for a minimum problem with free boundary. J Reine Angew Math, 1981, 325: 105--144
[5] Alt H W, Caffarelli L A, Friedman A. A free boundary problem for quasi-linear elliptic equations. Ann Scuola Norm Sup Pisacl Sci, 1984, 11: 1--44
[6] Kikuchi K, Omata S. A free boundary problem for one dimensional hyperbolic equation. Adv Math Sci Appl, 1999, 9(2): 775--786
[7] Nakane K, Shinohara T. Global solutions to a one-dimensional hyperbolic free boundary problem which arises
in peeling phenomenon. J Comput Appl Math, 2003, 152: 367--375
[8] Li Ta-tsien, Yu Wen-ci. Boundary Value Problems for Quasilinear Hyperbolic Systems. Durham: Duke University Mathematics Series V, 1985
[9] Li Ta-tsien. Global classical solutions for quasilinear hyperbolic systems. New York: John Wiley and Sons, 1994 |