[1] Sun Y D, Shi Y M. A new method for European option pricing with two stocks. Physical Sciences, 2010, 14(1): 165--171
[2] 薛红, 孙玉东. 分数跳-扩散过程下亚式期权定价模型. 工程数学学报, 2010, 27(6): 1009--1014
[3] 张骅月,陈万华, 曲立安. 分数Black-Scholes市场中的动态下跌风险. 数学物理学报, 2011, 31(6): 1674--1682
[4] 蹇明, 边潇男. 模糊环境下带交易费用的权证定价模型. 数学物理学报, 2010, 30(5): 1254--1262
[5] Cox J, Ross S A. The valuation of options for alternative stochastic processes. Financial Economics, 1976, 3(1): 145--166
[6] Cox J C, Ross S A, Rubinstein M. Option pricing: a simplified approach. Finance Economics, 1979, 7(3): 229--263
[7] Su Y L, Lin T I, Lee C F. Constant elasticity of variance (CEV) option pricing model: integration and detailed derivation. Mathematics and Coputers in Simulation, 2008, 79(1): 60--70
[8] Chen R R, Lee C F. A constant elasticity of variance (CEV) family of stock price distributions in option pricing: review and integration. Financial Study, 1993, 1(1): 29--51
[9] Emanuel D, MacBeth J. Further results on the constant elasticity of variance call option pricing formula. Finan Quantitative Anal, 1982, 17(1): 533--554
[10] Brandt M W, Kang Q. On the relationship between the conditional mean and volatility of stock returns: a latent VAR approach. Financial Economics. 2004, 72(2): 217--257
[11] Feller W. Two singular diffusion problems. Annals of Mathematics, 1951, 54(1): 173--182 |