[1] Abbondandolo A. Morse Theory for Hamiltonian Systems. London: Chapman & Hall, 2001
[2] Arioli G, Szulkin A. Homoclinic solutions of Hamiltonian systems with symmetry. J Diff Eq, 1999, 158: 291--313
[3] Bartolo P, Benci V, Fortunato D. Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity. Nonlinear Anal, 1983, 7: 241--273
[4] Benci V, Rabinowitz P H. Critical point theorems for indefinite functions. Invent Math, 1979, 52: 241--273
[5] Bartsch T, Willem M. Periodic solutions of non-autonomous Hamiltonian systems with symmetries. J Reine
Angew Math, 1994, 451: 149--159
[6] \v{C}aklovi\'c L. Periodic solution of a first order nonconvex Hamiltonian system. Glasnik Matemati\v{c}ki, 2002, 37: 101-118
[7] Ding Y. Infinitely many Homoclinic orbits for a class of Hamiltonian systems with symmetry. Chin Ann of Math, 1998, 19: 167--178
[8] Ding Y H, Girardi M. Infnitely many homoclinic orbits of a Hamiltonian system with symmetry. Nonlinear Anal, 1999, 38: 391--415
[9] Fei G. On periodic solutions of superquadratic Hamiltonian systems. Electronic Journal of Differential Equations,
2002, 2002: 1--12
[10] Long Y. Index Theory for Symplectic Paths with Applications. Belin: Birh\"{a}user, 2002
[11] Long Y, Xu X. Periodic solutions for a class of nonautonomous Hamiltonian systems. Nonlinear Anal, 2000, 41: 455--463
[12] Luan S, Mao A. Periodic solutions for a class of non-autonomous Hamiltonian systems. Nonlinear Anal, 2005, 61:
1413--1426
[13] Ou Z Q, Tang C L. Periodic and subharmonic solutions for a class of superquadratic Hamiltonian systems.
Nonlinear Anal, 2004, 58: 245--258
[14] Rabinowitz P H. Periodic solutions of Hamiltonian systems. Comm Pure Appl Math, 1978, 31: 157--184
[15] Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conf Ser in Math, Vol 65. Providence, RI: American Mathematical Society, 1986
[16] Xu X. Homoclinic orbits for first order Hamiltonian systems possessing super-quadratic potentials. Nonlinear
Anal, 2002, 51: 197--214
[17] Xu X. Periodic solutions for non-autonomous Hamiltonian systems possessing super-quadratic potentials.
Nonlinear Anal, 2002, 51: 941--955
[18] Xu X. Sub-harmonics for first order convex non-autonomous Hamiltonian systems. J Dynam Differential Equations, 2003, 15: 107--123
[19] Xu X. Sub-harmonics of first order Hamiltonian systems and their asymptotic behaviors. Discrete Contin Dyn Syst (Ser B), 2003, 3: 643--654
[20] Xu X. Homoclinic orbits for first order Hamiltonian systems with convex potentials. Advanced Nonlinear Studies, 2006, 6: 399--410 |