[1] Browder F E, Petryshyn W V. Construction of fixed points of nonlinear mappings in Hilbert space. J Math Anal Appl, 1967, 20: 197--228
[2] Combettes P L, Hirstoaga A. Equilibrium programming in Hilbert spaces. J Nonlinear Convex Anal, 2005, 6: 117--136
[3] Moudafi A, Thera M. Proximal and Dynamical Approaches to Equilibrium Problems//Lecture Notes in Economics and Mathematical Systems. Vol 477. Springer, 1999: 187--201
[4] Tada A, Takahashi W. Strong convergence theorem for an equilibrium problem and a nonexpansive mapping. J Optim Theory Appl, 2007, 133: 359--370
[5] Takahashi S, Takahashi W. Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert space. J Math Anal Appl, 2007, 331: 506--515
[6] Takahashi S, Takahashi W. Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space. Nonlinear Anal, 2008, 69: 1025--1033
[7] Hu C S, Cai G. Viscosity approximation schemes for fixed point problems and equilibrium problems and variational inequality problems. Nonlinear Anal, 2010, 72: 1792--1808
[8] Rockafellar R T. On the maximality of sums of nonlinear monotone operators. Trans Amer Math Soc, 1970, 149: 75--88
[9] Iiduka H, Takahashi W. Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings. Nonlinear Anal, 2005, 61: 341--350
[10] Suzuki T. Strong convergence of Krasnoselskii and Manns type sequences for oneparameter nonexpansive semigroups without Bochner integrals. J Math Anal Appl, 2005, 305: 227--229
[11] Xu H K. Interative algorithms for nonlinear operators. Journal of London Mathematical Society, 2002, 66: 240--256
[12] Shimoji K, Takahashi W. Strong convegence to common fixed points of infinite nonexpansive mappings and applications. Taiwanese J Math, 2001, 5(2): 387--404
[13] Chang S S, et al. A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization. Nonlinear Anal, 2008, doi: 10.1016/j.na.2008.04.035
[14] Blum E, Oettli S. From optimation and variational inequalities to equilibrium problems. Math Student, 1994, 63(1C4): 123--145
[15] Marino G, Xu H K. A general iterative method for nonexpansive mappings in Hilbert spaces. J Math Anal Appl, 2006, 318: 43--52 |