[1] Smoller J A. Shock Waves and Reaction-Diffusion Equations (Second Edition). New York: Springer-Verlag, 1994
[2] Wendroff B. The Riemann problem for materials with nonconvex equations state I: Isentropic flow. J Math Anal Appl, 1972, 38: 454--466
[3] 梁伯润. 高分子物理学(第二版). 北京:中国纺织出版社, 2000
[4] 于同隐, 何曼君等. 高聚物的粘弹性. 上海:上海科学技术出版社, 1986
[5] 沃德 I M. 固体高聚物的力学性能. 北京:科学出版社, 1980
[6] DiPerna R J. Convergence of apprpximate solutions to conservation laws. Arch Rational Mech Anal, 1983, 82: 27--70
[7] Lin P X. Young measures and an application of compensated compactness to one-dimensional nonlinear elastodynamics. Trans Amer Math Soc, 1992, 329: 377--413
[8] Zhu C J. Convergence of the viscosity solutions for the system of nonlinear elasticity. J Math Anal Appl, 1997, 209: 585--604
[9] Hattori H. The Riemann problem for a van der Waals fluid with entropy rate admissibility criterion-isothermal case.
Arch Rat Mech Anal, 1986, 92: 247--263
[10] Hattori H. The entropy rate admissibility criterion and the entropy condition for a phase transition problem: the isothermal case. SIAM J Appl Math, 2000, 31: 791--820
[11] Hsiao L. Uniqueness of admissible solutions of the Riemann problem for a system of conservation laws of mixed type. J Diff Equations, 1990, 86: 197--233
[12] Shearer M. The Riemann problem for a class of conservation laws of mixed type. J Diff Equations, 1982, 46: 426--443
[13] Slemrod M. Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Arch Rat Mech Anal, 1983, 81: 301--315
[14] Zhen Wang, Tingting Zhang. The Riemann problem for a class of nonlinear degenerate equations. J Math Anal Appl, 2012, 394: 112--120
[15] Liu T P. The Riemann problem for general 2 *2 conservation laws. Trans Amer Math Soc, 1974, 199: 89--112
[16] Liu T P. The Riemann problem for general systems of hyperbolic conservation laws. J Diff Equations, 1975, 18: 218--234
[17] Liu T P. Admissible Solutions of Hyperbolic Conservation Laws. Providence: Amer Math Soc, 1981
[18] Lax P D. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. Philadelphia: SIAM, 1973 |