数学物理学报 ›› 2013, Vol. 33 ›› Issue (4): 746-758.

• 论文 • 上一篇    下一篇

P*(κ)}线性互补问题的满Newton步不可行内点算法

朱丹花|张明望   

  1. 三峡大学理学院 湖北宜昌 443002
  • 收稿日期:2011-09-20 修回日期:2013-01-28 出版日期:2013-08-25 发布日期:2013-08-25
  • 基金资助:

    湖北省自然科学基金(2008CDZ047)和湖北省教育厅自然科学研究项目(Q20111208)资助

A New Full-Newton Infeasible Interior-point Algorithm for P*(κ) Linear Complementarity Problem

 ZHU Dan-Hua, ZHANG Ming-Wang   

  1. College of Science, China Three Gorges University, Hubei Yichang 443002
  • Received:2011-09-20 Revised:2013-01-28 Online:2013-08-25 Published:2013-08-25
  • Supported by:

    湖北省自然科学基金(2008CDZ047)和湖北省教育厅自然科学研究项目(Q20111208)资助

摘要:

P*(κ)线性互补问题(LCP)提出了一种新的不可行内点算法,新算法是Mansouri等人最近对单调LCP提出的满Newton步不可行内点算法的改进和推广.通过在收敛分析中建立一些新的技术性结果,克服了P*(κ)~LCP的非单调性给收敛分析带来的困难, 证明了新算法的迭代复杂性为O((1+4κ)2nlogmax{(x0)Ts0, ||r0||/ε)).

关键词: P*(κ)线性互补问题, 不可行内点算法, 满Newton步, 项式复杂性

Abstract:

This paper presents a new infeasible interior-point algorithm for P*(κ) linear complementarity problems(LCP), which is an extension and improvement of a full-Newton step infeasible interior-point algorithm for monotone LCP proposed by Hansouri et al  recently. With the non-monotone of the P*(κ)  LCP, we introduce some new technical results and
prove that the algorithm has iteration complexity with O((1+4κ)2nlogmax{(x0)Ts0, ||r0||/ε)).

Key words: P*(κ) linear complementarity problem, Infeasible interior-point methods, Full-Newton step, Polynomial complexity

中图分类号: 

  • 90C33