[1] Wahlbin L B. Superconvergence in Galerkin Finite Element Methods, Vol 1605. Berlin: Springer, 1995
[2] Zhu Q. A review of two different approaches for superconvergence analysis. Appl Math, 1998, 43(6): 401--411
[3] Li J, Wheeler M F. Uniform convergence and superconvergence of mixed finite element methods on anisotropically refined grids. SIAM J Numer Anal, 2000, 38(3): 770--798
[4] Lin Q, Lin J. Finite Element Methods: Accuracy and Improvement. Beijing: Science Press, 2006
[5] 林群, 严宁宁. 高效有限元构造与分析. 保定:河北大学出版社, 1996
[6] Yan N. Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods. Beijing: Science Press, 2008
[7] Matthies G, Skrzypacz P, Tobiska L. Superconvergence of a 3D finite element method for stationary Stokes and
Navier-Stokes problems. Numer Meth PDEs, 2005, 21(4): 701--725
[8] Li J, Mei L, Chen Z. Superconvergence of a stabilized finite element approximation for the Stokes equations using a local coarse mesh L2 projection. Numer Meth PDEs, 2010, DOI 10.1002/num.20610
[9] Eichel H, Tobiska L, Xie H. Superclosness and superconvergence of stabilized low order finite element discretizations of the Stokes problem. Math Comput, 2011, 80(274): 697--722
[10] Chen W, Chen P, Gunzburger M, Yan N. Superconvergence analysis of FEMs for the Stokes-Darcy system. Math Methods Appl Sci, 2010, 33: 1605--1617
[11] Antman S S. The equations for large vibrations of strings. Amer Math Monthly, 1980, 87: 359--370
[12] Georgiev V, Todorova G. Existence of a solution of the wave equation with nonlinear damping and source terms. J Differential Equations, 1994, 109: 295--308
[13] Bresch D, Desjardins B. Existence of global weak solutions for a 2D viscous shallow water equations and
convergence to the quasi-geostrophic model. Comm Math Phys, 2003, 238: 211--223
[14] Zhou Y. Global existence and nonexistence for a nonlinear wave equation with damping and source terms. Math Nach, 2005, 278(11): 1341--1358
[15] Constantin P. Inviscid limit for damped and driven incompressible Navier-Stokes equations in R2. Comm Math Phys, 2007, 275: 529--551
[16] 丁夏畦, 吴永辉. 二维全平面上具线性阻尼Navier-Stokes方程组解的有限维行为. 应用数学学报, 1997, 20(4): 509--520
[17] 赵春山, 李开泰. 二维全空间上线性阻尼Navier-Stokes方程的全局吸引子及其维数估计. 应用数学学报, 2000, 23(1): 90--98
[18] Cai X, Jiu Q. Weak and strong solutions for the incompressible Navier-Stokes equations with damping term. J Math Anal Appl, 2008, 343: 799--809
[19] Cai X, Lei L. L2 decay of the incompressible Navier-Stokes equations with damping. Acta Math Scientia, 2010, 30B(4): 1235--1248
[20] 刘德民, 李开泰. 带有阻尼项的Stokes 方程的有限元分析. 计算数学, 2010, 32(4): 433--448
[21] Lin Q, Tobiska L, Zhou A. Superconvergence and extrapolation of nonconforming low order elements applied to the
Poisson equation. IMA J Numer Anal, 2005, 25(1): 160--181
[22] Shi D Y, Liang H. Superconvergence analysis and extrapolation of a new unconventional Hermite-type anisotropic rectangular element. Math Numer Sinica, 2005, 27(4): 369--382
[23] Shi D Y, Peng Y C, Chen S C. Superconvergence of a nonconforming finite element approximation to viscoelasticity type equations on anisotropic meshes. Numer Math A Journal of Chinese Universities (English Series), 2006, 15: 375--384
[24] Qiao Z H, Yao C H, Jia S H. Superconvergence and extrapolation analysis of a nonconforming mixed finite element approximation for time-Harmonic Maxwell's equations. J Sci Comput, 2011, 46: 1--19
[25] Wang J, Ye X. Superconvergence of finite element approximations for the Stokes problem by projection methods. SIAM J Numer Anal, 2002, 30: 1001--1013
[26] Ye X. Superconvergence of nonconforming finite element method for the Stokes equations. Numer Meth PDEs, 2002, 18: 143--154
[27] 石东洋, 王彩霞. Stokes问题非协调混合有限元超收敛分析. 应用数学学报, 2007, 30(6): 1056--1065
[28] Liu H, Yan N. Superconvergence analysis of the nonconforming quadrilateral linear-constant scheme for Stokes equations. Adv Comput Math, 2008, 29: 375--392
[29] 胡俊, 满红英, 石钟慈. 带约束非协调旋转Q1 元在Stokes和平面弹性问题的应用. 计算数学, 2005, 27(3): 311--324
[30] Rannacher R, Turek S. Simple nonconforming quadrilateral Stokes element. Numer Meth for PDEs, 1992, 8: 97--111
[31] Apel T, Nicaise S, Sch"oberl J. Crouzeix-Raviart type finite elements on anisotropic meshes. Numer Math, 2001, 89: 193--223
[32] Shi D Y, Mao S P. An anisotropic nonconforming finite element with some superconvergence resultes. J Comput Math, 2005, 23(3): 261--274
[33] Shi D Y, Ren J C. Nonconforming mixed finite element approximation to the stationary Navier-Stokes equations on anisotropic meshes. Nonlinear Anal: TMA, 2009, 71(9): 3842--3852
[34] Shi D Y, Ren J C. Nonconforming mixed finite element method for the stationary conduction-convection problem. Int J Numer Anal Model, 2009, 6(2): 293--310
[35] Shi D Y, Wang C. A new low order nonconforming mixed finite element scheme for second order elliptic
problems. Inter J Comput Math, 2011, 88(10): 2167--2177
[36] Shi D Y, Ren J, Gong W. A new nonconforming mixed finite element scheme for the stationary Navier-Stokes equations. Acta Math Sci, 2011, 31(2): 367--382 |