数学物理学报 ›› 2013, Vol. 33 ›› Issue (4): 646-654.

• 论文 • 上一篇    下一篇

一类复蒙日-安培方程Dirichlet问题数值解探讨(四)

殷慰萍   

  1. 首都师范大学数学科学学院 北京 100048
  • 收稿日期:2012-02-07 修回日期:2013-01-13 出版日期:2013-08-25 发布日期:2013-08-25
  • 基金资助:

    国家自然科学基金(11071171, 11171285)资助.

Research on Numerical Solution of Dirichlet Problem of Complex Monge-Amp`ere Equation (IV)

 YAN Wei-Ping   

  1. School of Mathematical Science, Capital Normal University, Beijing 100048
  • Received:2012-02-07 Revised:2013-01-13 Online:2013-08-25 Published:2013-08-25
  • Supported by:

    国家自然科学基金(11071171, 11171285)资助.

摘要:

蒙日-安培方程是高度非线性的偏微分方程, 因此它的数值解非常困难. 该文对第四类Cartan-Hartogs域上的复蒙日-安培方程Dirichlet问题数值解进行了探讨. 首先, 把该问题化为一个二阶非线性常微分方程的两点边值问题的数值解. 其次, 在一些特殊的情况下, 得到了该方程的Dirichlet问题解的显表达式, 它可以用来检验该问题的数值解.

关键词: 复蒙日-安培方程, 数值解, Dirichlet问题, Cartan-Hartogs域, Kaehler-Einstein度量, 二阶非线性常微分方程的两点边值问题

Abstract:

Monge-Ampere equation is a nonlinear equation with high degree, therefore to get its numerical solution is very difficult. This paper studies the numerical solution of Dirichlet problem of complex Monge-Amp`ere equation on Cartan-Hartogs domain of the fourth type. Firstly, this problem is reduced to the numberical solution of two-point boundary value problem of a nonlinear second-order ordinary differential equation. Secondly, the solution of the above Dirichlet's problem is given in explicit formula under the special case, this explicit formula can be used to check above numerical
solution.

Key words: Complex Monge-Ampere equation, Dirichlets problem,  Cartan-Hartogs domain,  Kaehler-Einstein metric, Two-Point boundary value problems

中图分类号: 

  • 32C17