数学物理学报 ›› 2013, Vol. 33 ›› Issue (3): 475-482.

• 论文 • 上一篇    下一篇

一类统计量的乘积的渐近性质和几乎处处中心极限定理

邱瑾1|陆传荣2   

  1. 1.浙江财经学院 数学与统计学院 杭州 310018|2.浙江大学数学系 杭州 310028
  • 收稿日期:2011-11-19 修回日期:2013-02-28 出版日期:2013-06-25 发布日期:2013-06-25
  • 基金资助:

    浙江省自然科学基金(Y6110615)和教育部人文社会科学研究规划基金(12YJA910003)资助

The Asymptotic Properties and Almost Sure Central Limit Theorems for the Products of a Class of Statistics

 QIU Jin1, LU Chuan-Rong2   

  1. 1.School of Mathematics and Statistics, Zhejiang University of Finance and Economics, Hangzhou 310018;
    2.Department of Mathematics, Zhejiang University, Hangzhou 310028
  • Received:2011-11-19 Revised:2013-02-28 Online:2013-06-25 Published:2013-06-25
  • Supported by:

    浙江省自然科学基金(Y6110615)和教育部人文社会科学研究规划基金(12YJA910003)资助

摘要:

设{Xn, -∞<n<∞}为独立同分布平方可积正值随机变量序列, μ=EX1σ2=Var X1>0. 记Sn=∑ni=1Xi, Tn=Tn(X1, …, Xn)是一统计量(或随机函数), 可被表示为Tn=anSn+Rn, 其中an>0为常数序列, Rn为余项. 该文证明若Rn=o(ann) a.s., 则对统计量Tn的乘积的几乎处处中心极限定理成立, 且给出了它的渐近分布和弱不变原理. 并以U统计量, Von-Mises统计量, 线性模型误差方差的估计等几个常见的统计量为例说明结果应用的广泛性. 推广了以往文献中关于独立同分布随机变量和的乘积及U统计量乘积的相应结果.

关键词: 统计量的乘积, 几乎处处中心极限定理, 渐近分布, 弱不变原理

Abstract:

Let {Xn, -∞<n<∞} be a sequence of independent and identically distributed, positive, square integrable random variables with μ=EX1σ2=Var X1>0. The asymptotic properties for the products of a class of statistics (or random functions) expressed by Tn=anSn+Rn are discussed, where Sn=∑ni=1Xi, an>0 is a sequence of constants, Rn=o(ann) a.s.. The results contain the almost sure central limit theorems, asymptotically lognormality and the weak invariance principles. Some examples such as U-statistics, Von-Mises statistics, error variance estimates in linear models are stated to illustrate the generality of the results.

Key words: Products of statistics, Almost sure central limit theorem, Central limit theorem, Weak invariance principle

中图分类号: 

  • 60F05