[1] Aw A, Rascle M. Resurrection of second order models of traffic flow. SIAM J Appl Math, 2000, 60: 916--938
[2] Berthelin F, Degond P, Delitala M, Rascle M. A model for the formation and evolution of traffic jams. Arch Rational Mech Anal, 2008, 187: 185--220
[3] Bressan A, Lefloch P. Uniqueness of weak solutions to systems of conservation laws. Comm Math Phys, 1994, 165: 83--96
[4] Bressan A. The unique limit of the Glimm scheme. Arch Rational Mech Anal, 1995, 130: 205--230
[5] Daganzo C. Requiem for second order fluid approximations of traffic flow. Transportation Res B, 1995, 29: 277--286
[6] Dafermos C M. Hyperbolic Conservation Laws in Continuum Physics (Second Edition). Berlin: Springer, 2005
[7] Friedrichs K O, Lax P D. Systems of conservation equations with a convex extension. Proc Nat Acad Sci USA, 1971, 68: 1686--1688
[8] Godvik M, Hanche-Olsen H. Existence of solutions for the Aw-Rascle traffic flow model with vacuum. Journal of Hyperbolic Differential Equations, 2008, 5: 45--63
[9] Herty M, Rascle M. Coupling conditions for a class of second-order models for traffic flow. SIAM J Math Anal, 2006, 38: 595--616
[10] Lax P. Shock waves and entropy. Contribution to Nonlinear Functional Analysis. 1971, 41: 603--634
[11] Smoller J. Shock Waves and Reaction-Diffusion Equations. Berlin: Springer-Verlag, 1983
[12] Sun M. Interactions of elementary waves for the Aw-Rascle Model. SIAM J Appl Math, 2009, 69: 1542--1558
[13] Liu T P, Smoller J A. On the vacuum state for the isentropic gas dynamics equations. Adv Appl Math, 1980, 1: 345--359
[14] Temple B. Systems of conservation laws with coinciding shock and rarefaction curves. Contemp Math, 1983, 17: 143--151
[15] Zhang H M. A non-equilibrium traffic model devoid of gas-like behavior. Transportation Research Part B, 2002, 36: 275--290 |