数学物理学报 ›› 2012, Vol. 32 ›› Issue (6): 1063-1078.

• 论文 • 上一篇    下一篇

双共形不变量和Wodzicki 留数

王剑1,2|王勇1**   

  1. 1.东北师范大学 数学与统计学院  长春 130024|
    2.承德石油高等专科学校 河北承德 067000
  • 收稿日期:2011-05-15 修回日期:2012-04-25 出版日期:2012-12-25 发布日期:2012-12-25
  • 基金资助:

    国家自然科学基金(10801027)和霍英东教育基金(121003)资助

Double Conformal Invariants and the Wodzicki Residue

 WANG Jian1,2, WANG Yong1**   

  1. 1.School of Mathematics and Statistics, Northeast Normal University, Changchun 130024; |
    2.Chengde Petroleum College, Hebei Chengde 067000
  • Received:2011-05-15 Revised:2012-04-25 Online:2012-12-25 Published:2012-12-25
  • Supported by:

    国家自然科学基金(10801027)和霍英东教育基金(121003)资助

摘要:

对紧致实流形, 在Connes 的框架下用Wodzicki 留数和d算子构造了新的双共形不变量. 在平坦的情形, 计算了这个双共形不变量. 类似的, 对复流形, 用Wodzicki 留数和∂算子构造了新的双共形不变量并计算出其平坦的情形.

关键词: Wodzicki 留数, 双共形不变量

Abstract:

In this article, for compact real manifolds, a new double conformal invariant is constructed using the Wodzicki residue and the d operator
in the framework of Connes. In the flat case and some special cases, they compute these double conformal invariants. Similarly to complex manifolds, they construct a new double conformal invariant using the Wodzicki residue and the ∂operator, and this double conformal invariant is computed in the flat case.

Key words: Wodzicki residue, Double conformal invariants

中图分类号: 

  • 53A30